首页 > 最新文献

Frontiers of Physics最新文献

英文 中文
Self-aligned TiOx-based 3D vertical memristor for a high-density synaptic array 用于高密度突触阵列的基于氧化钛的自对准三维垂直忆阻器
IF 7.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-07-03 DOI: 10.1007/s11467-024-1419-2
Subaek Lee, Juri Kim, Sungjun Kim

The emerging nonvolatile memory, three-dimensional vertical resistive random-access memory (VRRAM), inspired by the vertical NAND structure, has been proposed to replace NAND flash memory which has reached its integration limit. To improve the vertical ionic diffusion occurring in the conventional VRRAM structure, we propose a Pt/HfO2/TiO2/Ti self-aligned VRRAM with physically confined switching cells through sidewall thermal oxidation. We achieved stable bipolar switching, endurance (>104 cycles), and retention (>104 s) responses, and improved the interlayer leakage current issue through a distinctive self-aligned structure. Additionally, we elucidated the switching mechanism by analyzing current levels concerning ambient temperature. To utilize VRRAM for neuromorphic computing, the biological synaptic functions are emulated by applying pulse stimulation to the synaptic cell. The weight modulation of biological synapses is demonstrated based on potentiation, depression, spike-rate-dependent plasticity, and spike-timing-dependent plasticity. Additionally, we improve the pattern recognition rate by creating a linear conductance modulation with an incremental pulse train in pattern recognition simulations. The stable electrical characteristics and implementation of various synaptic functions demonstrate that self-aligned VRRAM is suitable for neuromorphic systems as a high-density synaptic device.

受垂直 NAND 结构的启发,新兴的非易失性存储器--三维垂直电阻式随机存取存储器(VRRAM)被提出来取代已达到集成极限的 NAND 闪存。为了改善传统 VRRAM 结构中发生的垂直离子扩散,我们提出了一种 Pt/HfO2/TiO2/Ti 自对准 VRRAM,通过侧壁热氧化实现了开关单元的物理限制。我们实现了稳定的双极开关、耐久性(104 次)和保持(104 秒)响应,并通过独特的自对准结构改善了层间漏电流问题。此外,我们还通过分析环境温度下的电流水平,阐明了开关机制。为了将 VRRAM 用于神经形态计算,我们通过对突触细胞施加脉冲刺激来模拟生物突触功能。基于电位、抑制、尖峰速率依赖性可塑性和尖峰定时依赖性可塑性,演示了生物突触的权重调制。此外,我们还通过在模式识别模拟中使用增量脉冲序列创建线性电导调制来提高模式识别率。稳定的电气特性和各种突触功能的实现表明,自对准 VRRAM 适合作为神经形态系统的高密度突触设备。
{"title":"Self-aligned TiOx-based 3D vertical memristor for a high-density synaptic array","authors":"Subaek Lee, Juri Kim, Sungjun Kim","doi":"10.1007/s11467-024-1419-2","DOIUrl":"https://doi.org/10.1007/s11467-024-1419-2","url":null,"abstract":"<p>The emerging nonvolatile memory, three-dimensional vertical resistive random-access memory (VRRAM), inspired by the vertical NAND structure, has been proposed to replace NAND flash memory which has reached its integration limit. To improve the vertical ionic diffusion occurring in the conventional VRRAM structure, we propose a Pt/HfO<sub>2</sub>/TiO<sub>2</sub>/Ti self-aligned VRRAM with physically confined switching cells through sidewall thermal oxidation. We achieved stable bipolar switching, endurance (&gt;10<sup>4</sup> cycles), and retention (&gt;10<sup>4</sup> s) responses, and improved the interlayer leakage current issue through a distinctive self-aligned structure. Additionally, we elucidated the switching mechanism by analyzing current levels concerning ambient temperature. To utilize VRRAM for neuromorphic computing, the biological synaptic functions are emulated by applying pulse stimulation to the synaptic cell. The weight modulation of biological synapses is demonstrated based on potentiation, depression, spike-rate-dependent plasticity, and spike-timing-dependent plasticity. Additionally, we improve the pattern recognition rate by creating a linear conductance modulation with an incremental pulse train in pattern recognition simulations. The stable electrical characteristics and implementation of various synaptic functions demonstrate that self-aligned VRRAM is suitable for neuromorphic systems as a high-density synaptic device.</p>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141527261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Localized surface plasmon resonance enhanced photodetector: Physical model, enhanced mechanism and applications 局部表面等离子体共振增强型光电探测器:物理模型、增强机制和应用
IF 7.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-07-03 DOI: 10.1007/s11467-024-1413-8
Jiangtong Su, Xiaoqi Hou, Ning Dai, Yang Li

Localized surface plasmon resonance (LSPR) is an intriguing phenomenon that can break diffraction limitations and exhibit excellent light-confinement abilities, making it an attractive strategy for enhancing the light absorption capabilities of photodetectors. However, the complex mechanism behind this enhancement is still plaguing researchers, especially for hot-electron injection process, which inhibits further optimization and development. A clear guideline for basic physical model, enhancement mechanism, material selection and architectural design for LSPR photodetector are still required. This review firstly describes the mainstream understanding of fundamental physical modes of LSPR and related enhancement mechanism for LSPR photodetectors. Then, the universal strategies for tuning the LSPR frequency are introduced. Besides, the state-of-the-art progress in the development of LSPR photodetectors is briefly summarized. Finally, we highlight the remaining challenges and issues needed to be resolved in the future research.

局部表面等离子体共振(LSPR)是一种引人入胜的现象,它可以打破衍射限制,表现出卓越的光聚合能力,是增强光电探测器光吸收能力的一种极具吸引力的策略。然而,这种增强功能背后的复杂机制仍然困扰着研究人员,尤其是热电子注入过程,这阻碍了进一步的优化和开发。LSPR 光电探测器的基本物理模型、增强机制、材料选择和结构设计仍需要一个明确的指导原则。本综述首先介绍了对 LSPR 基本物理模式和 LSPR 光电探测器相关增强机制的主流认识。然后,介绍了调谐 LSPR 频率的通用策略。此外,还简要总结了 LSPR 光电探测器开发的最新进展。最后,我们强调了未来研究中仍需解决的挑战和问题。
{"title":"Localized surface plasmon resonance enhanced photodetector: Physical model, enhanced mechanism and applications","authors":"Jiangtong Su, Xiaoqi Hou, Ning Dai, Yang Li","doi":"10.1007/s11467-024-1413-8","DOIUrl":"https://doi.org/10.1007/s11467-024-1413-8","url":null,"abstract":"<p>Localized surface plasmon resonance (LSPR) is an intriguing phenomenon that can break diffraction limitations and exhibit excellent light-confinement abilities, making it an attractive strategy for enhancing the light absorption capabilities of photodetectors. However, the complex mechanism behind this enhancement is still plaguing researchers, especially for hot-electron injection process, which inhibits further optimization and development. A clear guideline for basic physical model, enhancement mechanism, material selection and architectural design for LSPR photodetector are still required. This review firstly describes the mainstream understanding of fundamental physical modes of LSPR and related enhancement mechanism for LSPR photodetectors. Then, the universal strategies for tuning the LSPR frequency are introduced. Besides, the state-of-the-art progress in the development of LSPR photodetectors is briefly summarized. Finally, we highlight the remaining challenges and issues needed to be resolved in the future research.</p>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141527262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation and characterization of customized Laguerre–Gaussian beams with arbitrary profiles 具有任意剖面的定制拉盖尔-高斯光束的生成和特性分析
IF 7.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-07-01 DOI: 10.1007/s11467-024-1426-3
Chengyuan Wang, Yun Chen, Jinwen Wang, Xin Yang, Hong Gao, Fuli Li

We experimentally demonstrate the generation of customized Laguerre–Gaussian (LG) beams whose intensity maxima are localized around any desired curves. The principle is to act with appropriate algebraic functions on the angular spectra of LG beams. We characterize the propagation properties of these beams and compare them with non-diffraction caustic beams possessing the same intensity profiles. The results manifest that the customized-LG beams can maintain their profiles during propagation and suffer less energy loss than the non-diffraction caustic beams, and hence are able to propagate a longer distance. Moreover, the customized-LG beam exhibits self-healing ability when parts of their bodies are blocked. This new structure beam has potential applications in areas such as optical communication, soliton routing and steering, and optical tweezing.

我们通过实验演示了定制拉盖尔-高斯(LG)光束的生成,这些光束的强度最大值被定位在任何所需的曲线周围。其原理是用适当的代数函数作用于 LG 光束的角频谱。我们描述了这些光束的传播特性,并将它们与具有相同强度剖面的非衍射苛性光束进行了比较。结果表明,与非衍射苛性光束相比,定制 LG 光束在传播过程中能保持其轮廓,能量损失较小,因此能传播更长的距离。此外,定制 LG 光束在其部分主体受阻时还能表现出自我修复能力。这种新结构光束在光通信、孤子路由和转向以及光镊等领域具有潜在的应用前景。
{"title":"Generation and characterization of customized Laguerre–Gaussian beams with arbitrary profiles","authors":"Chengyuan Wang, Yun Chen, Jinwen Wang, Xin Yang, Hong Gao, Fuli Li","doi":"10.1007/s11467-024-1426-3","DOIUrl":"https://doi.org/10.1007/s11467-024-1426-3","url":null,"abstract":"<p>We experimentally demonstrate the generation of customized Laguerre–Gaussian (LG) beams whose intensity maxima are localized around any desired curves. The principle is to act with appropriate algebraic functions on the angular spectra of LG beams. We characterize the propagation properties of these beams and compare them with non-diffraction caustic beams possessing the same intensity profiles. The results manifest that the customized-LG beams can maintain their profiles during propagation and suffer less energy loss than the non-diffraction caustic beams, and hence are able to propagate a longer distance. Moreover, the customized-LG beam exhibits self-healing ability when parts of their bodies are blocked. This new structure beam has potential applications in areas such as optical communication, soliton routing and steering, and optical tweezing.\u0000</p>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Van der Waals epitaxy of type-II band alignment CsPbI3/TMDC heterostructure for optoelectronic applications 用于光电应用的范德华外延 II 型带排列 CsPbI3/TMDC 异质结构
IF 7.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-06-24 DOI: 10.1007/s11467-024-1404-9
Chang Lu, Shunhui Zhang, Meili Chen, Haitao Chen, Mengjian Zhu, Zhengwei Zhang, Jun He, Lin Zhang, Xiaoming Yuan

Van der Waals epitaxy allows heterostructure formation without considering the lattice match requirement, thus is a promising method to form 2D/2D and 2D/3D heterojunction. Considering the unique optical properties of CsPbI3 and transition metal dichalcogenides (TMDCs), their heterostructure presents potential applications in both photonics and optoelectronics fields. Here, we demonstrate selective growth of cubic phase CsPbI3 nanofilm with thickness as thin as 4.0 nm and zigzag/armchair oriented nanowires (NWs) on monolayer WSe2. Furthermore, we show growth of CsPbI3 on both transferred WSe2 on copper grid and WSe2–based optoelectrical devices, providing a platform for structure analysis and device performance modification. Transmission electron microscopy (TEM) results reveal the epitaxial nature of cubic CsPbI3 phase. The revealed growth fundamental of CsPbI3 is universal valid for other two-dimensional substrates, offering a great advantage to fabricate CsPbI3 based van der Waals heterostructures (vdWHs). X-ray photoelectron spectroscopy (XPS) and optical characterization confirm the type-II band alignment, resulting in a fast charge transfer process and the occurrence of a broad emission peak at lower energy. The formation of WSe2/CsPbI3 heterostructure largely enhances the photocurrent from 2.38 nA to 38.59 nA. These findings are vital for bottom-up epitaxy of inorganic semiconductor on atomic thin 2D substrates for optoelectronic applications.

范德华外延可以在不考虑晶格匹配要求的情况下形成异质结构,因此是形成二维/二维和二维/三维异质结的一种很有前途的方法。考虑到 CsPbI3 和过渡金属二卤化物(TMDCs)独特的光学特性,它们的异质结构在光子学和光电子学领域都具有潜在的应用前景。在这里,我们展示了在单层 WSe2 上选择性生长厚度为 4.0 nm 的立方相 CsPbI3 纳米薄膜和人字形/臂向纳米线 (NW)。此外,我们还展示了 CsPbI3 在铜栅转印 WSe2 和基于 WSe2 的光电器件上的生长情况,为结构分析和器件性能改进提供了一个平台。透射电子显微镜(TEM)结果显示了立方 CsPbI3 相的外延性质。所揭示的 CsPbI3 生长基本原理对其他二维衬底也普遍适用,这为制造基于 CsPbI3 的范德华异质结构(vdWHs)提供了巨大优势。X 射线光电子能谱(XPS)和光学表征证实了 II 型带排列,从而产生了快速的电荷转移过程和较低能量的宽发射峰。WSe2/CsPbI3 异质结构的形成在很大程度上将光电流从 2.38 nA 提高到 38.59 nA。这些发现对于在原子薄二维衬底上自下而上地外延无机半导体以实现光电应用至关重要。
{"title":"Van der Waals epitaxy of type-II band alignment CsPbI3/TMDC heterostructure for optoelectronic applications","authors":"Chang Lu, Shunhui Zhang, Meili Chen, Haitao Chen, Mengjian Zhu, Zhengwei Zhang, Jun He, Lin Zhang, Xiaoming Yuan","doi":"10.1007/s11467-024-1404-9","DOIUrl":"https://doi.org/10.1007/s11467-024-1404-9","url":null,"abstract":"<p>Van der Waals epitaxy allows heterostructure formation without considering the lattice match requirement, thus is a promising method to form 2D/2D and 2D/3D heterojunction. Considering the unique optical properties of CsPbI<sub>3</sub> and transition metal dichalcogenides (TMDCs), their heterostructure presents potential applications in both photonics and optoelectronics fields. Here, we demonstrate selective growth of cubic phase CsPbI<sub>3</sub> nanofilm with thickness as thin as 4.0 nm and zigzag/armchair oriented nanowires (NWs) on monolayer WSe<sub>2</sub>. Furthermore, we show growth of CsPbI<sub>3</sub> on both transferred WSe<sub>2</sub> on copper grid and WSe<sub>2</sub>–based optoelectrical devices, providing a platform for structure analysis and device performance modification. Transmission electron microscopy (TEM) results reveal the epitaxial nature of cubic CsPbI<sub>3</sub> phase. The revealed growth fundamental of CsPbI<sub>3</sub> is universal valid for other two-dimensional substrates, offering a great advantage to fabricate CsPbI<sub>3</sub> based van der Waals heterostructures (vdWHs). X-ray photoelectron spectroscopy (XPS) and optical characterization confirm the type-II band alignment, resulting in a fast charge transfer process and the occurrence of a broad emission peak at lower energy. The formation of WSe<sub>2</sub>/CsPbI<sub>3</sub> heterostructure largely enhances the photocurrent from 2.38 nA to 38.59 nA. These findings are vital for bottom-up epitaxy of inorganic semiconductor on atomic thin 2D substrates for optoelectronic applications.</p>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unidirectional propagation of water waves near ancient Luoyang Bridge 洛阳古桥附近水波的单向传播
IF 7.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-06-20 DOI: 10.1007/s11467-024-1411-x
Linkang Han, Qilin Duan, Junliang Duan, Shan Zhu, Shiming Chen, Yuhang Yin, Huanyang Chen

Metasurfaces and metagratings offer new platforms for electromagnetic wave control with significant responses. However, metasurfaces based on abrupt phase change and resonant structures suffer from the drawback of high loss and face challenges when applied in water waves. Therefore, the application of metasurfaces in water wave control is not ideal due to the limitations associated with high loss and other challenges. We have discovered that non-resonant metagratings exhibit promising effects in water wave control. Leveraging the similarity between bridges and metagratings, we have successfully developed a water wave metagrating model inspired by the ancient Luoyang Bridge in China. We conduct theoretical calculations and simulations on the metagrating and derive the equivalent anisotropic model of the metagrating. This model provides evidence that the metagrating has the capability to control water waves and achieve unidirectional surface water wave. The accuracy of our theory is strongly supported by the clear observation of the unidirectional propagation phenomenon during simulation and experiments conducted using a reduced version of the metagrating. It is the first time that the unidirectional propagation of water waves has been seen in water wave metagrating experiment. Above all, we realize the water wave metagrating experiment for the first time. By combining complex gratings with real bridges, we explore the physics embedded in the ancient building — Luoyang Bridge, which are of great significance for the water wave metagrating design and provide a new method for analyzing the effects of water waves on bridges. At the same time, this discovery also provides a new idea for ocean cargo transportation, ocean garbage cleaning, and the development and protection of ancient bridges.

元表面和元格拉特为电磁波控制提供了新的平台,可产生显著的响应。然而,基于突变相位和谐振结构的元表面具有高损耗的缺点,在水波中应用时面临挑战。因此,由于高损耗和其他挑战带来的限制,元表面在水波控制中的应用并不理想。我们发现,非共振元表面在水波控制中表现出良好的效果。我们利用桥梁和元障壁之间的相似性,成功开发了一种水波元障壁模型,其灵感来自于中国古代的洛阳桥。我们对元气淋膜进行了理论计算和模拟,并推导出元气淋膜的等效各向异性模型。该模型证明了元栅具有控制水波和实现单向表面水波的能力。在模拟和使用简化版元气发生器进行的实验中,单向传播现象被清晰观测到,这有力地证明了我们理论的准确性。水波的单向传播现象首次出现在水波元晶实验中。最重要的是,我们首次实现了水波元光栅实验。通过将复杂光栅与真实桥梁相结合,我们探索了古建筑--洛阳桥中蕴含的物理规律,这对水波元侵设计具有重要意义,并为分析水波对桥梁的影响提供了一种新方法。同时,这一发现也为海洋货物运输、海洋垃圾清理、古桥开发与保护提供了新思路。
{"title":"Unidirectional propagation of water waves near ancient Luoyang Bridge","authors":"Linkang Han, Qilin Duan, Junliang Duan, Shan Zhu, Shiming Chen, Yuhang Yin, Huanyang Chen","doi":"10.1007/s11467-024-1411-x","DOIUrl":"https://doi.org/10.1007/s11467-024-1411-x","url":null,"abstract":"<p>Metasurfaces and metagratings offer new platforms for electromagnetic wave control with significant responses. However, metasurfaces based on abrupt phase change and resonant structures suffer from the drawback of high loss and face challenges when applied in water waves. Therefore, the application of metasurfaces in water wave control is not ideal due to the limitations associated with high loss and other challenges. We have discovered that non-resonant metagratings exhibit promising effects in water wave control. Leveraging the similarity between bridges and metagratings, we have successfully developed a water wave metagrating model inspired by the ancient Luoyang Bridge in China. We conduct theoretical calculations and simulations on the metagrating and derive the equivalent anisotropic model of the metagrating. This model provides evidence that the metagrating has the capability to control water waves and achieve unidirectional surface water wave. The accuracy of our theory is strongly supported by the clear observation of the unidirectional propagation phenomenon during simulation and experiments conducted using a reduced version of the metagrating. It is the first time that the unidirectional propagation of water waves has been seen in water wave metagrating experiment. Above all, we realize the water wave metagrating experiment for the first time. By combining complex gratings with real bridges, we explore the physics embedded in the ancient building — Luoyang Bridge, which are of great significance for the water wave metagrating design and provide a new method for analyzing the effects of water waves on bridges. At the same time, this discovery also provides a new idea for ocean cargo transportation, ocean garbage cleaning, and the development and protection of ancient bridges.\u0000</p>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-energy elastic (anti)neutrino–nucleon scattering in covariant baryon chiral perturbation theory 协变重子手性扰动理论中的低能弹性(反)中微子-核子散射
IF 7.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Pub Date : 2024-06-20 DOI: 10.1007/s11467-024-1417-4
Jin-Man Chen, Ze-Rui Liang, De-Liang Yao

The low-energy antineutrino- and neutrino–nucleon neutral current elastic scattering is studied within the framework of the relativistic SU(2) baryon chiral perturbation theory up to the order of ({cal O}({p^{3}})). We have derived the model-independent hadronic amplitudes and extracted the form factors from them. It is found that differential cross sections dσ/dQ2 for the processes of (anti)neutrino–proton scattering are in good agreement with the existing MiniBooNE data in the Q2 region [0.13, 0.20] GeV2, where nuclear effects are expected to be negligible. For Q2 ≤ 0.13 GeV2, large deviation is observed, which is mainly owing to the sizeable Pauli blocking effect. Comparisons with the simulation data produced by the NuWro and GENIE Mento Carlo events generators are also discussed. The chiral results obtained in this work can be utilized as inputs in various nuclear models to achieve the goal of precise determination of the strangeness axial vector form factor, in particular when the low-energy MicroBooNE data are available in the near future.

我们在相对论性SU(2)重子手性扰动理论的框架内研究了低能反中子和中子-核子中性电流弹性散射,直到({cal O}({p^{3}}))阶。我们导出了与模型无关的强子振幅,并从中提取了形式因子。我们发现,(反)中微子-质子散射过程的微分截面 dσ/dQ2 与 Q2 区域 [0.13, 0.20] GeV2 的现有 MiniBooNE 数据非常吻合,在该区域,核效应预计可以忽略不计。在 Q2 ≤ 0.13 GeV2 时,观察到了较大的偏差,这主要是由于相当大的保利阻挡效应造成的。此外,还讨论了与 NuWro 和 GENIE 门托卡罗事件发生器产生的模拟数据的比较。这项工作中获得的手性结果可以作为各种核模型的输入,以实现精确测定陌生化轴向矢量形式因子的目标,特别是在不久的将来获得低能微布恩数据时。
{"title":"Low-energy elastic (anti)neutrino–nucleon scattering in covariant baryon chiral perturbation theory","authors":"Jin-Man Chen, Ze-Rui Liang, De-Liang Yao","doi":"10.1007/s11467-024-1417-4","DOIUrl":"https://doi.org/10.1007/s11467-024-1417-4","url":null,"abstract":"<p>The low-energy antineutrino- and neutrino–nucleon neutral current elastic scattering is studied within the framework of the relativistic <i>SU</i>(2) baryon chiral perturbation theory up to the order of <span>({cal O}({p^{3}}))</span>. We have derived the model-independent hadronic amplitudes and extracted the form factors from them. It is found that differential cross sections d<i>σ</i>/d<i>Q</i><sup>2</sup> for the processes of (anti)neutrino–proton scattering are in good agreement with the existing MiniBooNE data in the <i>Q</i><sup>2</sup> region [0.13, 0.20] GeV<sup>2</sup>, where nuclear effects are expected to be negligible. For <i>Q</i><sup>2</sup> ≤ 0.13 GeV<sup>2</sup>, large deviation is observed, which is mainly owing to the sizeable Pauli blocking effect. Comparisons with the simulation data produced by the NuWro and GENIE Mento Carlo events generators are also discussed. The chiral results obtained in this work can be utilized as inputs in various nuclear models to achieve the goal of precise determination of the strangeness axial vector form factor, in particular when the low-energy MicroBooNE data are available in the near future.\u0000</p>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable alkali halide vapor assisted chemical vapor deposition of 2D HfSe2 templates and controllable oxidation of its heterostructures 二维 HfSe2 模板的稳定碱卤化物气相辅助化学气相沉积及其异质结构的可控氧化作用
IF 7.5 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-06-05 DOI: 10.1007/s11467-024-1414-7
Wenlong Chu, Xilong Zhou, Ze Wang, Xiulian Fan, Xuehao Guo, Cheng Li, Jianling Yue, Fangping Ouyang, Jiong Zhao, Yu Zhou

Two-dimensional hafnium-based semiconductors and their heterostructures with native oxides have been shown unique physical properties and potential electronic and optoelectronic applications. However, the scalable synthesis methods for ultrathin layered hafnium-based semiconductor laterally epitaxy growth and its heterostructure are still restricted, also for the understanding of its formation mechanism. Herein, we report the stable sublimation of alkali halide vapor assisted synthesis strategy for high-quality 2D HfSe2 nanosheets via chemical vapor deposition. Single-crystalline ultrathin 2D HfSe2 nanosheets were systematically grown by tuning the growth parameters, reaching the lateral size of 6–40 µm and the thickness down to 4.5 nm. The scalable amorphous HfO2 and HfSe2 heterostructures were achieved by the controllable oxidation, which benefited from the approximate zero Gibbs free energy of unstable 2D HfSe2 templates. The crystal structure, elemental, and time dependent Raman characterization were carried out to understand surface precipitated Se atoms and the formation of amorphous Hf–O bonds, confirming the slow surface oxidation and lattice incorporation of oxygen atoms. The relatively smooth surface roughness and electrical potential change of HfO2–HfSe2 heterostructures indicate the excellent interface quality, which helps obtain the high performance memristor with high on/off ratio of 105 and long retention period over 9000 s. Our work introduces a new vapor catalysts strategy for the synthesis of lateral 2D HfSe2 nanosheets, also providing the scalable oxidation of the Hf-based heterostructures for 2D electronic devices.

二维铪基半导体及其与原生氧化物的异质结构已显示出独特的物理特性和潜在的电子和光电应用。然而,超薄层状铪基半导体横向外延生长及其异质结构的可扩展合成方法仍然受到限制,这也不利于对其形成机理的理解。在此,我们报告了通过化学气相沉积稳定升华碱卤化物气相辅助合成高质量二维 HfSe2 纳米片的策略。通过调整生长参数,系统地生长出了单晶超薄二维 HfSe2 纳米片,其横向尺寸达到 6-40 µm,厚度低至 4.5 nm。由于不稳定的二维 HfSe2 模板的吉布斯自由能近似为零,通过可控氧化实现了可扩展的非晶态 HfO2 和 HfSe2 异质结构。为了了解表面析出的硒原子和非晶态 Hf-O 键的形成情况,对晶体结构、元素和时间依赖性拉曼特性进行了分析,证实了缓慢的表面氧化和氧原子的晶格结合。HfO2-HfSe2 异质结构相对平滑的表面粗糙度和电势变化表明其具有优异的界面质量,这有助于获得高性能的忆阻器,其开关比高达 105,保持时间长达 9000 秒以上。我们的工作为横向二维 HfSe2 纳米片的合成引入了一种新的气相催化剂策略,同时也为二维电子器件提供了可扩展的铪基异质结构氧化方法。
{"title":"Stable alkali halide vapor assisted chemical vapor deposition of 2D HfSe2 templates and controllable oxidation of its heterostructures","authors":"Wenlong Chu, Xilong Zhou, Ze Wang, Xiulian Fan, Xuehao Guo, Cheng Li, Jianling Yue, Fangping Ouyang, Jiong Zhao, Yu Zhou","doi":"10.1007/s11467-024-1414-7","DOIUrl":"https://doi.org/10.1007/s11467-024-1414-7","url":null,"abstract":"<p>Two-dimensional hafnium-based semiconductors and their heterostructures with native oxides have been shown unique physical properties and potential electronic and optoelectronic applications. However, the scalable synthesis methods for ultrathin layered hafnium-based semiconductor laterally epitaxy growth and its heterostructure are still restricted, also for the understanding of its formation mechanism. Herein, we report the stable sublimation of alkali halide vapor assisted synthesis strategy for high-quality 2D HfSe<sub>2</sub> nanosheets via chemical vapor deposition. Single-crystalline ultrathin 2D HfSe<sub>2</sub> nanosheets were systematically grown by tuning the growth parameters, reaching the lateral size of 6–40 µm and the thickness down to 4.5 nm. The scalable amorphous HfO<sub>2</sub> and HfSe<sub>2</sub> heterostructures were achieved by the controllable oxidation, which benefited from the approximate zero Gibbs free energy of unstable 2D HfSe<sub>2</sub> templates. The crystal structure, elemental, and time dependent Raman characterization were carried out to understand surface precipitated Se atoms and the formation of amorphous Hf–O bonds, confirming the slow surface oxidation and lattice incorporation of oxygen atoms. The relatively smooth surface roughness and electrical potential change of HfO<sub>2</sub>–HfSe<sub>2</sub> heterostructures indicate the excellent interface quality, which helps obtain the high performance memristor with high on/off ratio of 10<sup>5</sup> and long retention period over 9000 s. Our work introduces a new vapor catalysts strategy for the synthesis of lateral 2D HfSe<sub>2</sub> nanosheets, also providing the scalable oxidation of the Hf-based heterostructures for 2D electronic devices.\u0000</p>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141253511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum vortices get stretched 量子漩涡被拉伸
IF 7.5 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-06-01 DOI: 10.1007/s11467-024-1410-y
Emanuel A. L. Henn
{"title":"Quantum vortices get stretched","authors":"Emanuel A. L. Henn","doi":"10.1007/s11467-024-1410-y","DOIUrl":"https://doi.org/10.1007/s11467-024-1410-y","url":null,"abstract":"","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141406365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic and electrical transport study of the intrinsic magnetic topological insulator MnBi2Te4 with Ge doping 掺杂 Ge 的本征磁性拓扑绝缘体 MnBi2Te4 的磁学和电学输运研究
IF 7.5 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-31 DOI: 10.1007/s11467-024-1408-5
Qingwang Bai, Mingxiang Xu

As an intrinsic magnetic topological insulator with magnetic order and non-trivial topological structure, MnBi2Te4 is an ideal material for studying exotic topological states such as quantum anomalous Hall effect and topological axion insulating states. Here, we carry out magnetic and electrical transport measurements on (Mn1−xGex)Bi2Te4 (x = 0, 0.15, 0.30, 0.45, 0.60, and 0.75) single crystals. It is found that with increasing x, the dilution of magnetic moments gradually weakens the antiferromagnetic exchange interaction. Moreover, Ge doping reduces the critical field of ferromagnetic ordering, which may provide a possible way to implement the quantum anomalous Hall effect at lower magnetic field. Electrical transport measurements suggest that electrons are the dominant charge carriers, and the carrier density increases with the Ge doping ratio. Additionally, the Kondo effect is observed in the samples with x = 0.45, 0.60, and 0.75. Our results suggest that doping germanium is a viable way to tune the magnetic and electrical transport properties of MnBi2Te4, opening up the possibility of future applications in magnetic topological insulators.

作为一种具有磁有序和非三重拓扑结构的本征磁性拓扑绝缘体,MnBi2Te4 是研究量子反常霍尔效应和拓扑轴心绝缘态等奇异拓扑态的理想材料。在这里,我们对 (Mn1-xGex)Bi2Te4(x = 0、0.15、0.30、0.45、0.60 和 0.75)单晶体进行了磁学和电学输运测量。研究发现,随着 x 的增加,磁矩的稀释会逐渐减弱反铁磁交换相互作用。此外,Ge 掺杂降低了铁磁有序的临界磁场,这为在较低磁场下实现量子反常霍尔效应提供了可能。电传输测量表明,电子是主要的电荷载流子,载流子密度随 Ge 掺杂比例的增加而增加。此外,在 x = 0.45、0.60 和 0.75 的样品中观察到了近藤效应。我们的研究结果表明,掺杂锗是调整 MnBi2Te4 的磁性和电性传输特性的一种可行方法,为未来应用于磁性拓扑绝缘体提供了可能。
{"title":"Magnetic and electrical transport study of the intrinsic magnetic topological insulator MnBi2Te4 with Ge doping","authors":"Qingwang Bai, Mingxiang Xu","doi":"10.1007/s11467-024-1408-5","DOIUrl":"https://doi.org/10.1007/s11467-024-1408-5","url":null,"abstract":"<p>As an intrinsic magnetic topological insulator with magnetic order and non-trivial topological structure, MnBi<sub>2</sub>Te<sub>4</sub> is an ideal material for studying exotic topological states such as quantum anomalous Hall effect and topological axion insulating states. Here, we carry out magnetic and electrical transport measurements on (Mn<sub>1−<i>x</i></sub>Ge<sub><i>x</i></sub>)Bi<sub>2</sub>Te<sub>4</sub> (<i>x</i> = 0, 0.15, 0.30, 0.45, 0.60, and 0.75) single crystals. It is found that with increasing <i>x</i>, the dilution of magnetic moments gradually weakens the antiferromagnetic exchange interaction. Moreover, Ge doping reduces the critical field of ferromagnetic ordering, which may provide a possible way to implement the quantum anomalous Hall effect at lower magnetic field. Electrical transport measurements suggest that electrons are the dominant charge carriers, and the carrier density increases with the Ge doping ratio. Additionally, the Kondo effect is observed in the samples with <i>x</i> = 0.45, 0.60, and 0.75. Our results suggest that doping germanium is a viable way to tune the magnetic and electrical transport properties of MnBi<sub>2</sub>Te<sub>4</sub>, opening up the possibility of future applications in magnetic topological insulators.\u0000</p>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141189840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of thermal effects on atomic Bloch oscillation 热效应对原子布洛赫振荡的影响
IF 7.5 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-05-31 DOI: 10.1007/s11467-024-1420-9
Guoling Yin, Chi-Kin Lai, Nana Chang, Yi Liang, Dekai Mao, Xiaoji Zhou

Advancements in the experimental toolbox of cold atoms have enabled the meticulous control of atomic Bloch oscillation (BO) within optical lattices, thereby enhancing the capabilities of gravity interferometers. This work delves into the impact of thermal effects on Bloch oscillation in 1D accelerated optical lattices aligned with gravity by varying the system’s initial temperature. Through the application of Raman cooling, we effectively reduce the longitudinal thermal effect, stabilizing the longitudinal coherence length over the timescale of its lifetime. The atomic losses over multiple Bloch periods are measured, which are primarily attributed to transverse excitation. Furthermore, we identify two distinct inverse scaling behaviors in the oscillation lifetime scaled by the corresponding density with respect to temperatures, implying diverse equilibrium processes within or outside the Bose–Einstein condensate (BEC) regime. The competition between the system’s coherence and atomic density leads to a relatively smooth variation in the actual lifetime versus temperature. Our findings provide valuable insights into the interaction between thermal effects and BO, offering avenues for the refinement of quantum measurement technologies.

冷原子实验工具箱的进步实现了对光学晶格内原子布洛赫振荡(BO)的精细控制,从而提高了重力干涉仪的能力。这项工作通过改变系统的初始温度,深入研究热效应对与重力对齐的一维加速光学晶格中布洛赫振荡的影响。通过应用拉曼冷却,我们有效地降低了纵向热效应,稳定了纵向相干长度在其生命周期内的时间尺度。我们测量了多个布洛赫周期的原子损耗,这主要归因于横向激发。此外,我们在振荡寿命中发现了两种截然不同的反向缩放行为,即相应密度与温度的缩放关系,这意味着在玻色-爱因斯坦凝聚态(BEC)机制内外存在着不同的平衡过程。系统的相干性和原子密度之间的竞争导致实际寿命相对于温度的平滑变化。我们的发现为热效应与玻色-爱因斯坦凝聚态之间的相互作用提供了宝贵的见解,为完善量子测量技术提供了途径。
{"title":"Influence of thermal effects on atomic Bloch oscillation","authors":"Guoling Yin, Chi-Kin Lai, Nana Chang, Yi Liang, Dekai Mao, Xiaoji Zhou","doi":"10.1007/s11467-024-1420-9","DOIUrl":"https://doi.org/10.1007/s11467-024-1420-9","url":null,"abstract":"<p>Advancements in the experimental toolbox of cold atoms have enabled the meticulous control of atomic Bloch oscillation (BO) within optical lattices, thereby enhancing the capabilities of gravity interferometers. This work delves into the impact of thermal effects on Bloch oscillation in 1D accelerated optical lattices aligned with gravity by varying the system’s initial temperature. Through the application of Raman cooling, we effectively reduce the longitudinal thermal effect, stabilizing the longitudinal coherence length over the timescale of its lifetime. The atomic losses over multiple Bloch periods are measured, which are primarily attributed to transverse excitation. Furthermore, we identify two distinct inverse scaling behaviors in the oscillation lifetime scaled by the corresponding density with respect to temperatures, implying diverse equilibrium processes within or outside the Bose–Einstein condensate (BEC) regime. The competition between the system’s coherence and atomic density leads to a relatively smooth variation in the actual lifetime versus temperature. Our findings provide valuable insights into the interaction between thermal effects and BO, offering avenues for the refinement of quantum measurement technologies.\u0000</p>","PeriodicalId":573,"journal":{"name":"Frontiers of Physics","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141190034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Frontiers of Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1