Cooperative guidance of a multi-quadrotors system with switching and reduced network information exchange: application to uncooperative target entrapping
{"title":"Cooperative guidance of a multi-quadrotors system with switching and reduced network information exchange: application to uncooperative target entrapping","authors":"Ahmed Allam, Abdelkrim Nemra, Mohamed Tadjine","doi":"10.1142/s2301385025500141","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the leader–followers Time-Varying Formation Tracking (TVFT) problem of a networked Multi-Agent Systems (MASs) based output feedback. The agents’ behavior is featured by linear dynamics. The interaction topology among the agents is switching over time, directed and only assumed to contain a directed spanning tree. This latter is rooted by a leader-agent whose control input is unknown and bounded. A novel fully distributed TVFT controller is proposed that exhibits a reduced network information exchange property among the agents, thus less communicating-resources are utilized. The proposed controlled design is based on an adaptive observer and disturbance rejection technique, where the unknown leader-input is viewed as an external disturbance. The key feature lies in introducing a local observer in each agent-controller design to observe all the relative neighboring output-measurements and the relative neighboring distributed observer-outputs, all gathered in one signal that we denote the agent’s network information signal. The Lyapunov theory is used to prove that the closed-loop MASs tracking error is stable. An analysis of the effect of the interaction topology structure on the tracking-error convergence rate is further provided, showing the validity of the proposed formation control for switching interaction topologies. Finally, to verify the effectiveness of the obtained results, the proposed controller is extended to a cooperative guidance of a networked quadrotors to track and entrap an uncooperative aerial target that plays the role of a passive leader.","PeriodicalId":44832,"journal":{"name":"Unmanned Systems","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2301385025500141","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the leader–followers Time-Varying Formation Tracking (TVFT) problem of a networked Multi-Agent Systems (MASs) based output feedback. The agents’ behavior is featured by linear dynamics. The interaction topology among the agents is switching over time, directed and only assumed to contain a directed spanning tree. This latter is rooted by a leader-agent whose control input is unknown and bounded. A novel fully distributed TVFT controller is proposed that exhibits a reduced network information exchange property among the agents, thus less communicating-resources are utilized. The proposed controlled design is based on an adaptive observer and disturbance rejection technique, where the unknown leader-input is viewed as an external disturbance. The key feature lies in introducing a local observer in each agent-controller design to observe all the relative neighboring output-measurements and the relative neighboring distributed observer-outputs, all gathered in one signal that we denote the agent’s network information signal. The Lyapunov theory is used to prove that the closed-loop MASs tracking error is stable. An analysis of the effect of the interaction topology structure on the tracking-error convergence rate is further provided, showing the validity of the proposed formation control for switching interaction topologies. Finally, to verify the effectiveness of the obtained results, the proposed controller is extended to a cooperative guidance of a networked quadrotors to track and entrap an uncooperative aerial target that plays the role of a passive leader.
期刊介绍:
An unmanned system is a machine or device that is equipped with necessary data processing units, sensors, automatic control, and communications systems and is capable of performing missions autonomously without human intervention. Unmanned systems include unmanned aircraft, ground robots, underwater explorers, satellites, and other unconventional structures. Unmanned Systems (US) aims to cover all subjects related to the development of automatic machine systems, which include advanced technologies in unmanned hardware platforms (aerial, ground, underwater and unconventional platforms), unmanned software systems, energy systems, modeling and control, communications systems, computer vision systems, sensing and information processing, navigation and path planning, computing, information fusion, multi-agent systems, mission management, machine intelligence, artificial intelligence, and innovative application case studies. US welcomes original manuscripts in the following categories: research papers, which disseminate scientific findings contributing to solving technical issues underlying the development of unmanned systems; review articles and state-of-the-art surveys, which describe the latest in basic theories, principles, and innovative applications; short articles, which discuss the latest significant achievements and the future trends; and book reviews. Special issues related to the topics of US are welcome. A short proposal should be sent to the Editors-in-Chief. It should include a tentative title; the information of the Guest Editor(s); purpose and scope; possible contributors; and a tentative timetable. If the proposal is accepted, the Guest Editor(s) will be responsible for the special issue and should follow the normal US review process. Copies of the reviewed papers and the reviewers'' comments should be given to the Editors-in-Chief for recording purposes.