Sweet sorghum and bagasse: a comprehensive review of feedstock traits, conversion processes, and economic viability for bioethanol and biogas production
{"title":"Sweet sorghum and bagasse: a comprehensive review of feedstock traits, conversion processes, and economic viability for bioethanol and biogas production","authors":"Ali Mubarak Alqahtani","doi":"10.1080/17597269.2023.2261789","DOIUrl":null,"url":null,"abstract":"AbstractThis review aims to provide an extensive examination of the significance of sweet sorghum and bagasse in the context of bioethanol and biogas production. The review analyzes the available literature on sweet sorghum and bagasse as potential feedstocks for bioenergy production. It examines their physical and chemical properties, cultivation requirements, various pretreatment methods, fermentation processes, efficiency, and environmental implications. It also assesses the economic viability of and potential barriers to commercialization. Moreover, the importance of technological advancements in biomass conversion efficiency, fermentation processes, and enzymatic hydrolysis has been reviewed. The substrates’ rich cellulose and hemicellulose content enhances the efficiency of conversion processes. Remarkable advancements have been observed in fermentation techniques, with genetic engineering strategies offering potential avenues for performance enhancement. The assessment of environmental implications underscores the importance of optimizing conversion yields and energy balance to establish a sustainable bioenergy production framework. Techno-economic analyses affirm the economic feasibility of deriving bioethanol and biogas from sweet sorghum and bagasse. This thorough analysis emphasizes the substantial potential of sweet sorghum and bagasse as valuable feedstocks for bioethanol and biogas production.Keywords: Bioethanolbiogassweet sorghumbagasse Author contributionsThe author conducted a complete review process, including conceptualization; methodology; writing, review and editing; project administration; and funding acquisition.Conflicts of interest statementThe author declares that he has no conflict of interest.Data availability statementThe author confirms that the data supporting the findings of this study are available within the article.","PeriodicalId":56057,"journal":{"name":"Biofuels-Uk","volume":"51 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuels-Uk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17597269.2023.2261789","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractThis review aims to provide an extensive examination of the significance of sweet sorghum and bagasse in the context of bioethanol and biogas production. The review analyzes the available literature on sweet sorghum and bagasse as potential feedstocks for bioenergy production. It examines their physical and chemical properties, cultivation requirements, various pretreatment methods, fermentation processes, efficiency, and environmental implications. It also assesses the economic viability of and potential barriers to commercialization. Moreover, the importance of technological advancements in biomass conversion efficiency, fermentation processes, and enzymatic hydrolysis has been reviewed. The substrates’ rich cellulose and hemicellulose content enhances the efficiency of conversion processes. Remarkable advancements have been observed in fermentation techniques, with genetic engineering strategies offering potential avenues for performance enhancement. The assessment of environmental implications underscores the importance of optimizing conversion yields and energy balance to establish a sustainable bioenergy production framework. Techno-economic analyses affirm the economic feasibility of deriving bioethanol and biogas from sweet sorghum and bagasse. This thorough analysis emphasizes the substantial potential of sweet sorghum and bagasse as valuable feedstocks for bioethanol and biogas production.Keywords: Bioethanolbiogassweet sorghumbagasse Author contributionsThe author conducted a complete review process, including conceptualization; methodology; writing, review and editing; project administration; and funding acquisition.Conflicts of interest statementThe author declares that he has no conflict of interest.Data availability statementThe author confirms that the data supporting the findings of this study are available within the article.
Biofuels-UkEnergy-Renewable Energy, Sustainability and the Environment
CiteScore
5.40
自引率
9.50%
发文量
56
期刊介绍:
Current energy systems need a vast transformation to meet the key demands of the 21st century: reduced environmental impact, economic viability and efficiency. An essential part of this energy revolution is bioenergy.
The movement towards widespread implementation of first generation biofuels is still in its infancy, requiring continued evaluation and improvement to be fully realised. Problems with current bioenergy strategies, for example competition over land use for food crops, do not yet have satisfactory solutions. The second generation of biofuels, based around cellulosic ethanol, are now in development and are opening up new possibilities for future energy generation. Recent advances in genetics have pioneered research into designer fuels and sources such as algae have been revealed as untapped bioenergy resources.
As global energy requirements change and grow, it is crucial that all aspects of the bioenergy production process are streamlined and improved, from the design of more efficient biorefineries to research into biohydrogen as an energy carrier. Current energy infrastructures need to be adapted and changed to fulfil the promises of biomass for power generation.
Biofuels provides a forum for all stakeholders in the bioenergy sector, featuring review articles, original research, commentaries, news, research and development spotlights, interviews with key opinion leaders and much more, with a view to establishing an international community of bioenergy communication.
As biofuel research continues at an unprecedented rate, the development of new feedstocks and improvements in bioenergy production processes provide the key to the transformation of biomass into a global energy resource. With the twin threats of climate change and depleted fossil fuel reserves looming, it is vitally important that research communities are mobilized to fully realize the potential of bioenergy.