Stephen D. Shivers, Stephen W. Golladay, Matthew N. Waters, Susan B. Wilde, Nicholas S. Marzolf, Alan P. Covich
{"title":"Invasive species interactions affect nutrient cycling in a shallow reservoir: a mesocosm experiment","authors":"Stephen D. Shivers, Stephen W. Golladay, Matthew N. Waters, Susan B. Wilde, Nicholas S. Marzolf, Alan P. Covich","doi":"10.1080/10402381.2023.2248605","DOIUrl":null,"url":null,"abstract":"AbstractShivers SD, Golladay SW, Waters MN, Wilde SB, Marzolf NS, Covich AP. 2023. Invasive species interactions affect nutrient cycling in a shallow reservoir: a mesocosm experiment. Lake Reserv Manage. XX:XXX–XXX.Nonnative species’ introductions can affect nutrient dynamics as new combinations of species form novel ecosystems. This experiment investigated how combinations of 3 invasive species, 1 submerged macrophyte (Hydrilla) and 2 benthic invertebrates (Corbicula and Pomacea), affected nutrient cycling in a shallow reservoir, Lake Seminole, Georgia, United States. To assess these effects, an in-reservoir mesocosm array was installed using different combinations of the invasive species. Eight physical and chemical parameters of water quality were measured in all the mesocosms (1 control, 7 treatments) weekly for the duration of the 5 wk experiment. Nitrogenous compounds were strongly affected by Hydrilla and Pomacea presence, with NO3-N concentrations decreasing in Hydrilla mesocosms and NH4-N and total nitrogen (TN) increasing in Pomacea mesocosms. Corbicula, when present, helped to mitigate increases in N concentrations, presumably as filter feeding reduced water column TN concentration. Overall, Hydrilla growth reduced inorganic N concentration. Pomacea grazing converted stored N to available organic and particulate N. Total phosphorus concentrations were not impacted by the invasive species treatments and increased in all mesocosms during the experiment. In short, Hydrilla and Corbicula are contributing to the uptake, conversion, and sequestration of nutrients that may increase eutrophication, while Pomacea is releasing potentially eutrophying nutrients. As climate change and human influence continue to create new combinations of species, it is important to understand the effects produced by novel combinations of species.Keywords: Corbiculahydrillanonnative speciesnutrient processingPomacea AcknowledgmentsThe authors thank Brian Clayton, Bryan Cloninger, Nathalie Smith, Barry Shelton, and the Golladay lab for assistance in the field and laboratory. The authors thank Jean Brock for assistance with ArcGIS. The authors also thank 3 anonymous reviewers for their insightful comments on an earlier version of this article.Additional informationFundingFunding for this project was provided by the National Science foundation [DEB 1404160 to A. P. Covich and S. D. Shivers], the Jones Center at Ichauway, and the University of Georgia Graduate School.","PeriodicalId":49148,"journal":{"name":"Lake and Reservoir Management","volume":"13 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lake and Reservoir Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10402381.2023.2248605","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractShivers SD, Golladay SW, Waters MN, Wilde SB, Marzolf NS, Covich AP. 2023. Invasive species interactions affect nutrient cycling in a shallow reservoir: a mesocosm experiment. Lake Reserv Manage. XX:XXX–XXX.Nonnative species’ introductions can affect nutrient dynamics as new combinations of species form novel ecosystems. This experiment investigated how combinations of 3 invasive species, 1 submerged macrophyte (Hydrilla) and 2 benthic invertebrates (Corbicula and Pomacea), affected nutrient cycling in a shallow reservoir, Lake Seminole, Georgia, United States. To assess these effects, an in-reservoir mesocosm array was installed using different combinations of the invasive species. Eight physical and chemical parameters of water quality were measured in all the mesocosms (1 control, 7 treatments) weekly for the duration of the 5 wk experiment. Nitrogenous compounds were strongly affected by Hydrilla and Pomacea presence, with NO3-N concentrations decreasing in Hydrilla mesocosms and NH4-N and total nitrogen (TN) increasing in Pomacea mesocosms. Corbicula, when present, helped to mitigate increases in N concentrations, presumably as filter feeding reduced water column TN concentration. Overall, Hydrilla growth reduced inorganic N concentration. Pomacea grazing converted stored N to available organic and particulate N. Total phosphorus concentrations were not impacted by the invasive species treatments and increased in all mesocosms during the experiment. In short, Hydrilla and Corbicula are contributing to the uptake, conversion, and sequestration of nutrients that may increase eutrophication, while Pomacea is releasing potentially eutrophying nutrients. As climate change and human influence continue to create new combinations of species, it is important to understand the effects produced by novel combinations of species.Keywords: Corbiculahydrillanonnative speciesnutrient processingPomacea AcknowledgmentsThe authors thank Brian Clayton, Bryan Cloninger, Nathalie Smith, Barry Shelton, and the Golladay lab for assistance in the field and laboratory. The authors thank Jean Brock for assistance with ArcGIS. The authors also thank 3 anonymous reviewers for their insightful comments on an earlier version of this article.Additional informationFundingFunding for this project was provided by the National Science foundation [DEB 1404160 to A. P. Covich and S. D. Shivers], the Jones Center at Ichauway, and the University of Georgia Graduate School.
期刊介绍:
Lake and Reservoir Management (LRM) publishes original, previously unpublished studies relevant to lake and reservoir management. Papers address the management of lakes and reservoirs, their watersheds and tributaries, along with the limnology and ecology needed for sound management of these systems. Case studies that advance the science of lake management or confirm important management concepts are appropriate as long as there is clearly described management significance. Papers on economic, social, regulatory and policy aspects of lake management are also welcome with appropriate supporting data and management implications. Literature syntheses and papers developing a conceptual foundation of lake and watershed ecology will be considered for publication, but there needs to be clear emphasis on management implications. Modeling papers will be considered where the model is properly verified but it is also highly preferable that management based on the model has been taken and results have been documented. Application of known models to yet another system without a clear advance in resultant management are unlikely to be accepted. Shorter notes that convey important early results of long-term studies or provide data relating to causative agents or management approaches that warrant further study are acceptable even if the story is not yet complete. All submissions are subject to peer review to assure relevance and reliability for management application.