Yueling Che, Zeyu Zhao, Sheng Luo, Kaishun Wu, Lingjie Duan, Victor C. M. Leung
{"title":"UAV-Aided Wireless Energy Transfer for Sustaining Internet of Everything in 6G","authors":"Yueling Che, Zeyu Zhao, Sheng Luo, Kaishun Wu, Lingjie Duan, Victor C. M. Leung","doi":"10.3390/drones7100628","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) are a promising technology used to provide on-demand wireless energy transfer (WET) and sustain various low-power ground devices (GDs) for the Internet of Everything (IoE) in sixth generation (6G) wireless networks. However, an individual UAV has limited battery energy, which may confine the required wide-range mobility in a complex IoE scenario. Furthermore, the heterogeneous GDs in IoE applications have distinct non-linear energy harvesting (EH) properties and diversified energy and/or communication demands, which poses new requirements on the WET and trajectory design of UAVs. In this article, to reflect the non-linear EH properties of GDs, we propose the UAV’s effective-WET zone (E-zone) above each GD, where a GD is assured to harvest non-zero energy from the UAV only when the UAV transmits into the E-zone. We then introduce the free space optics (FSO) powered UAV with enhanced mobility, and propose its adaptive WET for the GDs with non-linear EH. Considering the time urgency of the different energy demands of the GDs, we propose a new metric called the energy latency time, which is the time duration that a GD can wait before becoming fully charged. By proposing the energy-demand aware UAV trajectory, we further present a novel hierarchical WET scheme to meet the GDs’ diversified energy latency time. Moreover, to efficiently sustain IoE communications, the multi-UAV enabled WET is employed by unleashing their cooperative diversity gain and the joint design with the wireless information transfer (WIT). The numerical results show that our proposed multi-UAV cooperative WET scheme under the energy-aware trajectory design achieves the shortest task completion time as compared to the state-of-the-art benchmarks. Finally, the new directions for future research are also provided.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"46 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones7100628","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 1
Abstract
Unmanned aerial vehicles (UAVs) are a promising technology used to provide on-demand wireless energy transfer (WET) and sustain various low-power ground devices (GDs) for the Internet of Everything (IoE) in sixth generation (6G) wireless networks. However, an individual UAV has limited battery energy, which may confine the required wide-range mobility in a complex IoE scenario. Furthermore, the heterogeneous GDs in IoE applications have distinct non-linear energy harvesting (EH) properties and diversified energy and/or communication demands, which poses new requirements on the WET and trajectory design of UAVs. In this article, to reflect the non-linear EH properties of GDs, we propose the UAV’s effective-WET zone (E-zone) above each GD, where a GD is assured to harvest non-zero energy from the UAV only when the UAV transmits into the E-zone. We then introduce the free space optics (FSO) powered UAV with enhanced mobility, and propose its adaptive WET for the GDs with non-linear EH. Considering the time urgency of the different energy demands of the GDs, we propose a new metric called the energy latency time, which is the time duration that a GD can wait before becoming fully charged. By proposing the energy-demand aware UAV trajectory, we further present a novel hierarchical WET scheme to meet the GDs’ diversified energy latency time. Moreover, to efficiently sustain IoE communications, the multi-UAV enabled WET is employed by unleashing their cooperative diversity gain and the joint design with the wireless information transfer (WIT). The numerical results show that our proposed multi-UAV cooperative WET scheme under the energy-aware trajectory design achieves the shortest task completion time as compared to the state-of-the-art benchmarks. Finally, the new directions for future research are also provided.