{"title":"Firefighting Drone Configuration and Scheduling for Wildfire Based on Loss Estimation and Minimization","authors":"Rong-Yu Wu, Xi-Cheng Xie, Yujun Zheng","doi":"10.3390/drones8010017","DOIUrl":null,"url":null,"abstract":"Drones have been increasingly used in firefighting to improve the response speed and reduce the dangers to human firefighters. However, few studies simultaneously consider fire spread prediction, drone scheduling, and the configuration of supporting staff and supplies. This paper presents a mathematical model that estimates wildfire spread and economic losses simultaneously. The model can also help us to determine the minimum number of firefighting drones in preparation for wildfire in a given wild area. Next, given a limited number of firefighting drones, we propose a method for scheduling the drones in response to wildfire occurrence to minimize the expected loss using metaheuristic optimization. We demonstrate the performance advantages of water wave optimization over a set of other metaheuristic optimization algorithms on 72 test instances simulated on selected suburb areas of Hangzhou, China. Based on the optimization results, we can pre-define a comprehensive plan of scheduling firefighting drone and configuring support staff in response to a set of scenarios of wildfire occurrences, significantly improving the emergency response efficiency and reducing the potential losses.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"4 10","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/drones8010017","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
Drones have been increasingly used in firefighting to improve the response speed and reduce the dangers to human firefighters. However, few studies simultaneously consider fire spread prediction, drone scheduling, and the configuration of supporting staff and supplies. This paper presents a mathematical model that estimates wildfire spread and economic losses simultaneously. The model can also help us to determine the minimum number of firefighting drones in preparation for wildfire in a given wild area. Next, given a limited number of firefighting drones, we propose a method for scheduling the drones in response to wildfire occurrence to minimize the expected loss using metaheuristic optimization. We demonstrate the performance advantages of water wave optimization over a set of other metaheuristic optimization algorithms on 72 test instances simulated on selected suburb areas of Hangzhou, China. Based on the optimization results, we can pre-define a comprehensive plan of scheduling firefighting drone and configuring support staff in response to a set of scenarios of wildfire occurrences, significantly improving the emergency response efficiency and reducing the potential losses.