Vacuum filtration method towards flexible thermoelectric films

Soft science Pub Date : 2023-10-09 DOI:10.20517/ss.2023.25
Chenxi Wang, Qing Liu, Haijun Song, Qinglin Jiang
{"title":"Vacuum filtration method towards flexible thermoelectric films","authors":"Chenxi Wang, Qing Liu, Haijun Song, Qinglin Jiang","doi":"10.20517/ss.2023.25","DOIUrl":null,"url":null,"abstract":"Thermoelectric (TE) conversion technology can directly exploit the temperature difference of several Kelvin between the human body and the environment to generate electricity, which provides a self-powered solution for wearable electronics. Flexible TE materials are increasingly being developed through various methods, among which the vacuum filtration method stands out for its unique advantages, attracting the favor of researchers. It has been proven to construct flexible TE thin films with excellent performance effectively. This paper presents a comprehensive overview and survey of the advances of the vacuum filtration method in producing flexible TE thin films. The materials covered in this study include conducting polymer-based materials, carbon nanoparticle-based materials, inorganic materials, two-dimensional materials, and ternary composites. Finally, we explore potential research outlooks and the significance of flexible films, which are at the forefront of research in TE materials science.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ss.2023.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermoelectric (TE) conversion technology can directly exploit the temperature difference of several Kelvin between the human body and the environment to generate electricity, which provides a self-powered solution for wearable electronics. Flexible TE materials are increasingly being developed through various methods, among which the vacuum filtration method stands out for its unique advantages, attracting the favor of researchers. It has been proven to construct flexible TE thin films with excellent performance effectively. This paper presents a comprehensive overview and survey of the advances of the vacuum filtration method in producing flexible TE thin films. The materials covered in this study include conducting polymer-based materials, carbon nanoparticle-based materials, inorganic materials, two-dimensional materials, and ternary composites. Finally, we explore potential research outlooks and the significance of flexible films, which are at the forefront of research in TE materials science.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柔性热电薄膜的真空过滤方法
热电(TE)转换技术可以直接利用人体与环境之间几个开尔文的温差来发电,为可穿戴电子产品提供了自供电的解决方案。柔性TE材料正通过各种方法得到越来越多的开发,其中真空过滤法以其独特的优势脱颖而出,吸引了研究人员的青睐。已被证明可以有效地构建性能优异的柔性TE薄膜。本文对真空过滤法制备柔性TE薄膜的研究进展进行了综述和综述。本研究涉及的材料包括导电聚合物基材料、碳纳米颗粒基材料、无机材料、二维材料和三元复合材料。最后,我们探讨了柔性薄膜的潜在研究前景和意义,这是TE材料科学研究的前沿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Unity quantum yield of InP/ZnSe/ZnS quantum dots enabled by Zn halide-derived hybrid shelling approach Recent advances in laser-induced-graphene-based soft skin electronics for intelligent healthcare Body-attachable multifunctional electronic skins for bio-signal monitoring and therapeutic applications Liquid metal neuro-electrical interface 3D-printed magnetic-based air pressure sensor for continuous respiration monitoring and breathing rehabilitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1