Numerical investigation of heat and mass transfer of variable viscosity Casson nanofluid flow through a microchannel filled with a porous medium

Lemi Guta Enyadene, Ebba Hindebu Rikitu, Adugna Fita Gabissa
{"title":"Numerical investigation of heat and mass transfer of variable viscosity Casson nanofluid flow through a microchannel filled with a porous medium","authors":"Lemi Guta Enyadene, Ebba Hindebu Rikitu, Adugna Fita Gabissa","doi":"10.59400/jam.v1i3.194","DOIUrl":null,"url":null,"abstract":"Thermal behaviours and hydrodynamics of non-Newtonian nanofluids flow through permeable microchannels have large scale utilizations in industries, engineering and bio-medicals. Therefore, this paper presents the numerical investigation of heat and mass transfer of variable viscosity Casson nanofluid flow through a porous medium microchannel with the Cattaneo-Christov heat flux theory. The highly nonlinear PDEs corresponding to the continuity, momentum, energy and concentration equations are formulated and solved numerically via the second order implicit finite difference scheme known as the Keller-Box method. Accordingly, the numerical simulations reveal that variable viscosity parameter, thermal Grashof number, solutal Grashof number, thermophoresis parameter, Schmidt number and Casson fluid parameter show increasing effects on both velocity and temperature of the nanofluid. Furthermore, the temperature profile escalates with increasing values of the Eckert number and the thermal relaxation time parameter. Thus, the Cattaneo-Christov heat flux model is beneficial in warming the transport system of microfluidics when compared to that of the classical Fourier heat conduction law. The temperature profile however, indicates a retarding behavior with increasing values of the Brownian motion parameter, Prandtl number and porous medium parameters namely Forchheimer number and porous medium shape parameter and hence, the porous medium quite effectively controls the nanofluid temperature distribution which plays substantial roles in cooling the transport system of microfluidics. Moreover, the concentration profile shows an increasing pattern with escalating values of the Prandtl number, Schmidt number and thermophoresis parameter but it demonstrates a decreasing trend with the Casson fluid, variable viscosity, thermal relaxation time and solutal relaxation time parameters. It is also observed that coefficient of the skin friction increases with increasing values of the pressure gradient parameter, Eckert number, Forchheimer number and injection/suction Reynolds number. Besides, the heat transfer rate at both walls of the microchannel enhances with rising values of the Eckert number, variable viscosity, parameter and injection/suction Reynolds number. The Casson fluid and thermal relaxation time parameters reveal opposite scenarios on the heat transfer rate at the left and right walls of the microchannel. In addition, the mass transfer rate at both walls of the microchannel shows an increasing pattern as the Eckert number, variable viscosity parameter, Schmidt number and suction/injection Reynolds number increase.","PeriodicalId":495855,"journal":{"name":"Journal of AppliedMath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of AppliedMath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59400/jam.v1i3.194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal behaviours and hydrodynamics of non-Newtonian nanofluids flow through permeable microchannels have large scale utilizations in industries, engineering and bio-medicals. Therefore, this paper presents the numerical investigation of heat and mass transfer of variable viscosity Casson nanofluid flow through a porous medium microchannel with the Cattaneo-Christov heat flux theory. The highly nonlinear PDEs corresponding to the continuity, momentum, energy and concentration equations are formulated and solved numerically via the second order implicit finite difference scheme known as the Keller-Box method. Accordingly, the numerical simulations reveal that variable viscosity parameter, thermal Grashof number, solutal Grashof number, thermophoresis parameter, Schmidt number and Casson fluid parameter show increasing effects on both velocity and temperature of the nanofluid. Furthermore, the temperature profile escalates with increasing values of the Eckert number and the thermal relaxation time parameter. Thus, the Cattaneo-Christov heat flux model is beneficial in warming the transport system of microfluidics when compared to that of the classical Fourier heat conduction law. The temperature profile however, indicates a retarding behavior with increasing values of the Brownian motion parameter, Prandtl number and porous medium parameters namely Forchheimer number and porous medium shape parameter and hence, the porous medium quite effectively controls the nanofluid temperature distribution which plays substantial roles in cooling the transport system of microfluidics. Moreover, the concentration profile shows an increasing pattern with escalating values of the Prandtl number, Schmidt number and thermophoresis parameter but it demonstrates a decreasing trend with the Casson fluid, variable viscosity, thermal relaxation time and solutal relaxation time parameters. It is also observed that coefficient of the skin friction increases with increasing values of the pressure gradient parameter, Eckert number, Forchheimer number and injection/suction Reynolds number. Besides, the heat transfer rate at both walls of the microchannel enhances with rising values of the Eckert number, variable viscosity, parameter and injection/suction Reynolds number. The Casson fluid and thermal relaxation time parameters reveal opposite scenarios on the heat transfer rate at the left and right walls of the microchannel. In addition, the mass transfer rate at both walls of the microchannel shows an increasing pattern as the Eckert number, variable viscosity parameter, Schmidt number and suction/injection Reynolds number increase.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变粘度卡森纳米流体在多孔介质微通道中的传热传质数值研究
非牛顿纳米流体通过可渗透微通道的热行为和流体动力学在工业、工程和生物医学中具有大规模的应用。因此,本文采用Cattaneo-Christov热流密度理论对变粘度卡森纳米流体在多孔介质微通道中的传热传质进行了数值研究。高度非线性偏微分方程对应于连续性、动量、能量和浓度方程,并通过二阶隐式有限差分格式Keller-Box法进行数值求解。数值模拟结果表明,变粘度参数、热格拉什夫数、溶质格拉什夫数、热进样参数、施密特数和卡森流体参数对纳米流体的速度和温度的影响均呈递增趋势。温度分布随Eckert数和热松弛时间参数的增大而增大。因此,与经典傅立叶热传导定律相比,Cattaneo-Christov热流密度模型有利于微流体输运系统的升温。随着布朗运动参数、普朗特数和多孔介质参数(即Forchheimer数和多孔介质形状参数)的增大,温度分布表现出一种延迟行为,因此多孔介质可以有效地控制纳米流体的温度分布,对微流体输运系统的冷却起着重要作用。随着普朗特数、施密特数和热泳参数的增大,其浓度分布呈增加趋势,而随着卡森流体、变粘度、热弛豫时间和溶质弛豫时间参数的增大,其浓度分布呈下降趋势。表面摩擦系数随压力梯度参数、Eckert数、Forchheimer数和注射/吸力雷诺数的增大而增大。同时,随着Eckert数、变黏度、参数和注射/吸力雷诺数的增大,微通道两侧壁面的换热速率增大。卡森流体和热松弛时间参数揭示了微通道左右壁面换热速率的相反情况。此外,随着Eckert数、变粘度参数、Schmidt数和吸注雷诺数的增加,微通道两侧壁面传质速率呈增加趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological analysis of multiple tables Topological analysis of multiple tables Hindustani classical music revisited statistically: Does the order of Markov chain in the note dependence depend on the raga or the composition? Enhancing handwritten numeric string recognition through incremental support vector machines A logical approach to validate the Goldbach conjecture: Paper 1/3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1