Al Masri Walaa, Mumtaz Ali, Al-Hartomy Omar, S. Wageh
{"title":"Solid-State Emissive Carbon Quantum Dots (CQDs) with a Long Wavelength Emission","authors":"Al Masri Walaa, Mumtaz Ali, Al-Hartomy Omar, S. Wageh","doi":"10.1166/jno.2023.3476","DOIUrl":null,"url":null,"abstract":"Carbon quantum dots (CQDs)—growing stars of the nanocarbon family—have received attention owing to their intriguing photoluminescence (PL), stability, and biocompatibility. However, CQDs may suffer from serious aggregation-caused quenching (ACQ) of PL, specifically in powder or thin film form. Moreover, most engineering applications are solid-state; therefore, it is important to design solid-state emissive CQDs, potentially defeating ACQ. Previous reviews highlighted the strategies for solid-state emissive CQDs; however, less focus has been given to CQDs with emissions at longer wavelengths. This review summarizes recent advances (specifically in the last two years), focusing on long wavelengths, including yellow-, orange-, and red-emissive fluorescence. Furthermore, the synthesis method, quantum yield, and mechanism of fluorescence are explained. In addition, a detailed summary of synthesis parameters and their role in emission tuning is highlighted. Finally, the future directions and potential applications of solid-state CQDs for emerging applications were discussed.","PeriodicalId":16446,"journal":{"name":"Journal of Nanoelectronics and Optoelectronics","volume":"8 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoelectronics and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jno.2023.3476","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon quantum dots (CQDs)—growing stars of the nanocarbon family—have received attention owing to their intriguing photoluminescence (PL), stability, and biocompatibility. However, CQDs may suffer from serious aggregation-caused quenching (ACQ) of PL, specifically in powder or thin film form. Moreover, most engineering applications are solid-state; therefore, it is important to design solid-state emissive CQDs, potentially defeating ACQ. Previous reviews highlighted the strategies for solid-state emissive CQDs; however, less focus has been given to CQDs with emissions at longer wavelengths. This review summarizes recent advances (specifically in the last two years), focusing on long wavelengths, including yellow-, orange-, and red-emissive fluorescence. Furthermore, the synthesis method, quantum yield, and mechanism of fluorescence are explained. In addition, a detailed summary of synthesis parameters and their role in emission tuning is highlighted. Finally, the future directions and potential applications of solid-state CQDs for emerging applications were discussed.