Post-processing CHARIS integral field spectrograph data with pyKLIP

Minghan Chen, Jason J Wang, Timothy D Brandt, Thayne Currie, Julien Lozi, Jeffrey Chilcote, Maria Vincent
{"title":"Post-processing CHARIS integral field spectrograph data with pyKLIP","authors":"Minghan Chen, Jason J Wang, Timothy D Brandt, Thayne Currie, Julien Lozi, Jeffrey Chilcote, Maria Vincent","doi":"10.1093/rasti/rzad039","DOIUrl":null,"url":null,"abstract":"Abstract We present the pyKLIP-CHARIS post-processing pipeline, a Python library that reduces high contrast imaging data for the CHARIS integral field spectrograph used with the SCExAO project on the Subaru Telescope. The pipeline is a part of the pyklip package, a Python library dedicated to the reduction of direct imaging data of exoplanets, brown dwarfs, and discs. For PSF subtraction, the pyKLIP-CHARIS post-processing pipeline relies on the core algorithms implemented in pyklip but uses image registration and calibrations that are unique to CHARIS. We describe the pipeline procedures, calibration results, and capabilities in processing imaging data acquired via the angular differential imaging and spectral differential imaging observing techniques. We showcase its performance on extracting spectra of injected synthetic point sources as well as compare the extracted spectra from real data sets on HD 33632 and HR 8799 to results in the literature. The pipeline is a python-based complement to the SCExAO project supported, widely used (and currently IDL-based) CHARIS data post-processing pipeline (CHARIS DPP) and provides an additional approach to reducing CHARIS data and extracting calibrated planet spectra.","PeriodicalId":500957,"journal":{"name":"RAS Techniques and Instruments","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAS Techniques and Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/rasti/rzad039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We present the pyKLIP-CHARIS post-processing pipeline, a Python library that reduces high contrast imaging data for the CHARIS integral field spectrograph used with the SCExAO project on the Subaru Telescope. The pipeline is a part of the pyklip package, a Python library dedicated to the reduction of direct imaging data of exoplanets, brown dwarfs, and discs. For PSF subtraction, the pyKLIP-CHARIS post-processing pipeline relies on the core algorithms implemented in pyklip but uses image registration and calibrations that are unique to CHARIS. We describe the pipeline procedures, calibration results, and capabilities in processing imaging data acquired via the angular differential imaging and spectral differential imaging observing techniques. We showcase its performance on extracting spectra of injected synthetic point sources as well as compare the extracted spectra from real data sets on HD 33632 and HR 8799 to results in the literature. The pipeline is a python-based complement to the SCExAO project supported, widely used (and currently IDL-based) CHARIS data post-processing pipeline (CHARIS DPP) and provides an additional approach to reducing CHARIS data and extracting calibrated planet spectra.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用pyKLIP对CHARIS积分场光谱仪数据进行后处理
摘要:我们提出了pyKLIP-CHARIS后处理管道,这是一个Python库,用于减少与斯巴鲁望远镜SCExAO项目一起使用的CHARIS积分场光谱仪的高对比度成像数据。该管道是pyklip包的一部分,pyklip包是一个Python库,专门用于减少系外行星,褐矮星和磁盘的直接成像数据。对于PSF减法,pyklip -CHARIS后处理管道依赖于pyklip中实现的核心算法,但使用CHARIS独有的图像配准和校准。我们描述了管道程序,校准结果,以及处理通过角微分成像和光谱微分成像观测技术获得的成像数据的能力。我们展示了它在提取注入合成点源光谱方面的性能,并将从HD 33632和HR 8799实际数据集提取的光谱与文献结果进行了比较。该管道是对SCExAO项目支持的、广泛使用的(目前基于idl的)CHARIS数据后处理管道(CHARIS DPP)的一个基于python的补充,并提供了一种额外的方法来减少CHARIS数据和提取校准的行星光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The exosphere of Mars can be tracked by a high-spectral resolution telescope, such as the Line Emission Mapper Training a convolutional neural network for real-bogus classification in the ATLAS survey Exoplanet host star classification: Multi-Objective Optimisation of incomplete stellar abundance data PTFE as a viable sealing material for lightweight mass spectrometry ovens in dusty extraterrestrial environments PTFE as a viable sealing material for lightweight mass spectrometry ovens in dusty extraterrestrial environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1