Training a convolutional neural network for real-bogus classification in the ATLAS survey

J. Weston, K. W. Smith, S. Smartt, J. Tonry, H. Stevance
{"title":"Training a convolutional neural network for real-bogus classification in the ATLAS survey","authors":"J. Weston, K. W. Smith, S. Smartt, J. Tonry, H. Stevance","doi":"10.1093/rasti/rzae027","DOIUrl":null,"url":null,"abstract":"\n We present a Convolutional Neural Network (CNN) for use in the Real-Bogus classification of transient detections made by the Asteroid Terrestrial Impact Last Alert System (ATLAS) and subsequent efforts to improve performance since initial development. In transient detection surveys the number of alerts made outstrips the capacity for human scanning, necessitating the use of machine learning aids to reduce the number of false positives presented to annotators. We take a sample of recently annotated data from each of the three operating ATLAS telescope with ∼340,000 real (known transients) and ∼1,030,000 bogus detections per model. We retrained the CNN architecture with these data specific to each ATLAS unit, achieving a median False Positive Rate (FPR) of 0.72 per cent for a 1.00 per cent missed detection rate. Further investigations indicate if we reduce the input image size it results in increases to the false positive rate. Finally architecture adjustments and comparisons to contemporary CNNs indicate our retrained classifier is providing an optimal FPR. We conclude that the periodic retraining and readjustment of classification models on survey data can yield significant improvements as data drift arising from changes to optical and detector performance can lead to new features in the model and subsequent deteriorations in performance.","PeriodicalId":500957,"journal":{"name":"RAS Techniques and Instruments","volume":"12 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAS Techniques and Instruments","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1093/rasti/rzae027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a Convolutional Neural Network (CNN) for use in the Real-Bogus classification of transient detections made by the Asteroid Terrestrial Impact Last Alert System (ATLAS) and subsequent efforts to improve performance since initial development. In transient detection surveys the number of alerts made outstrips the capacity for human scanning, necessitating the use of machine learning aids to reduce the number of false positives presented to annotators. We take a sample of recently annotated data from each of the three operating ATLAS telescope with ∼340,000 real (known transients) and ∼1,030,000 bogus detections per model. We retrained the CNN architecture with these data specific to each ATLAS unit, achieving a median False Positive Rate (FPR) of 0.72 per cent for a 1.00 per cent missed detection rate. Further investigations indicate if we reduce the input image size it results in increases to the false positive rate. Finally architecture adjustments and comparisons to contemporary CNNs indicate our retrained classifier is providing an optimal FPR. We conclude that the periodic retraining and readjustment of classification models on survey data can yield significant improvements as data drift arising from changes to optical and detector performance can lead to new features in the model and subsequent deteriorations in performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 ATLAS 勘测中训练卷积神经网络进行真实迷惑分类
我们介绍了一种卷积神经网络(CNN),该网络用于对小行星撞击地球最后警报系统(ATLAS)的瞬态探测结果进行Real-Bogus分类,以及自最初开发以来为提高性能所做的后续努力。在瞬变探测调查中,警报的数量超过了人工扫描的能力,因此有必要使用机器学习辅助工具来减少呈现给注释者的误报数量。我们从三个运行中的 ATLAS 望远镜中各抽取了一个最近注释的数据样本,每个模型有 ∼340,000 次真实(已知瞬变)和 ∼1,030,000 次假检测。我们利用这些数据对每个 ATLAS 单元的 CNN 架构进行了重新训练,在 1.00%的漏检率下,误报率(FPR)的中位数为 0.72%。进一步的研究表明,如果我们缩小输入图像的尺寸,误报率就会增加。最后,架构调整以及与当代 CNN 的比较表明,我们重新训练的分类器能够提供最佳的 FPR。我们的结论是,对调查数据的分类模型进行定期再训练和再调整可以产生显著的改进,因为光学和探测器性能的变化所引起的数据漂移会导致模型中出现新的特征,从而导致性能下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The exosphere of Mars can be tracked by a high-spectral resolution telescope, such as the Line Emission Mapper Training a convolutional neural network for real-bogus classification in the ATLAS survey Exoplanet host star classification: Multi-Objective Optimisation of incomplete stellar abundance data PTFE as a viable sealing material for lightweight mass spectrometry ovens in dusty extraterrestrial environments PTFE as a viable sealing material for lightweight mass spectrometry ovens in dusty extraterrestrial environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1