{"title":"Wireless Control of Active Gate Drivers for Silicon Carbide Power MOSFETs","authors":"Daniel A. Philipps;Dimosthenis Peftitsis","doi":"10.1109/OJIES.2023.3326380","DOIUrl":null,"url":null,"abstract":"Active gate drivers (AGDs) enhance the controllability and monitoring of switching devices, especially for fast switching silicon carbide (SiC) power metal–oxide–semiconductor field-effect transistors (\n<sc>mosfet</small>\ns). To support information flow between gate driver, converter, and grid control units, high-performance digital infrastructure is required. This article proposes a practical strategy of assessing the benefits of using wireless communication technologies (WCTs) in power electronics systems (PESs) employing AGDs. First, information transmission routes (ITRs) are identified and located within a PES. Second, an ITR taxonomy is proposed, classifying ITRs and describing both application scenarios and requirements for every class. After presenting general advantages of WCTs over wired alternatives, seven specific WCTs are individually characterized. Subsequently, the benefits of using WCTs are evaluated for each ITR class, resulting in a specific recommendation for or against the use of WCTs, and at least one appropriate WCT for each ITR. Experimental results demonstrate that the wireless control of AGDs for SiC power \n<sc>mosfet</small>\ns is feasible using Bluetooth low energy. It is shown that an exemplary AGD can be effectively controlled with an information transmission delay of less than 45 ms, which is sufficient for the intended target applications.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"4 ","pages":"519-533"},"PeriodicalIF":5.2000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10288413","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10288413/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Active gate drivers (AGDs) enhance the controllability and monitoring of switching devices, especially for fast switching silicon carbide (SiC) power metal–oxide–semiconductor field-effect transistors (
mosfet
s). To support information flow between gate driver, converter, and grid control units, high-performance digital infrastructure is required. This article proposes a practical strategy of assessing the benefits of using wireless communication technologies (WCTs) in power electronics systems (PESs) employing AGDs. First, information transmission routes (ITRs) are identified and located within a PES. Second, an ITR taxonomy is proposed, classifying ITRs and describing both application scenarios and requirements for every class. After presenting general advantages of WCTs over wired alternatives, seven specific WCTs are individually characterized. Subsequently, the benefits of using WCTs are evaluated for each ITR class, resulting in a specific recommendation for or against the use of WCTs, and at least one appropriate WCT for each ITR. Experimental results demonstrate that the wireless control of AGDs for SiC power
mosfet
s is feasible using Bluetooth low energy. It is shown that an exemplary AGD can be effectively controlled with an information transmission delay of less than 45 ms, which is sufficient for the intended target applications.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.