On estimation of covariance function for functional data with detection limits

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Journal of Nonparametric Statistics Pub Date : 2023-09-19 DOI:10.1080/10485252.2023.2258999
Haiyan Liu, Jeanine Houwing-Duistermaat
{"title":"On estimation of covariance function for functional data with detection limits","authors":"Haiyan Liu, Jeanine Houwing-Duistermaat","doi":"10.1080/10485252.2023.2258999","DOIUrl":null,"url":null,"abstract":"In many studies on disease progression, biomarkers are restricted by detection limits, hence informatively missing. Current approaches ignore the problem by just filling in the value of the detection limit for the missing observations for the estimation of the mean and covariance function, which yield inaccurate estimation. Inspired by our recent work [Liu and Houwing-Duistermaat (2022), ‘Fast Estimators for the Mean Function for Functional Data with Detection Limits’, Stat, e467.] in which novel estimators for mean function for data subject to detection limit are proposed, in this paper, we will propose a novel estimator for the covariance function for sparse and dense data subject to a detection limit. We will derive the asymptotic properties of the estimator. We will compare our method to the standard method, which ignores the detection limit, via simulations. We will illustrate the new approach by analysing biomarker data subject to a detection limit. In contrast to the standard method, our method appeared to provide more accurate estimates of the covariance. Moreover its computation time is small.","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"20 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10485252.2023.2258999","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In many studies on disease progression, biomarkers are restricted by detection limits, hence informatively missing. Current approaches ignore the problem by just filling in the value of the detection limit for the missing observations for the estimation of the mean and covariance function, which yield inaccurate estimation. Inspired by our recent work [Liu and Houwing-Duistermaat (2022), ‘Fast Estimators for the Mean Function for Functional Data with Detection Limits’, Stat, e467.] in which novel estimators for mean function for data subject to detection limit are proposed, in this paper, we will propose a novel estimator for the covariance function for sparse and dense data subject to a detection limit. We will derive the asymptotic properties of the estimator. We will compare our method to the standard method, which ignores the detection limit, via simulations. We will illustrate the new approach by analysing biomarker data subject to a detection limit. In contrast to the standard method, our method appeared to provide more accurate estimates of the covariance. Moreover its computation time is small.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带检出限的函数数据的协方差函数估计
在许多疾病进展的研究中,生物标志物受到检测限的限制,因此信息缺失。目前的方法忽略了这个问题,只是在估计均值和协方差函数时,为缺失的观测值填写检测限的值,从而产生不准确的估计。受我们最近工作的启发[Liu和Houwing-Duistermaat(2022),“具有检测限的功能数据的平均函数的快速估计器”,Stat, e467。],其中提出了受检测极限约束的数据的均值函数的新估计,在本文中,我们将提出一个受检测极限约束的稀疏和密集数据的协方差函数的新估计。我们将推导估计量的渐近性质。我们将通过模拟将我们的方法与忽略检测极限的标准方法进行比较。我们将通过分析受检测限制的生物标志物数据来说明新方法。与标准方法相比,我们的方法似乎提供了更准确的协方差估计。而且计算时间小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nonparametric Statistics
Journal of Nonparametric Statistics 数学-统计学与概率论
CiteScore
1.50
自引率
8.30%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics: Nonparametric modeling, Nonparametric function estimation, Rank and other robust and distribution-free procedures, Resampling methods, Lack-of-fit testing, Multivariate analysis, Inference with high-dimensional data, Dimension reduction and variable selection, Methods for errors in variables, missing, censored, and other incomplete data structures, Inference of stochastic processes, Sample surveys, Time series analysis, Longitudinal and functional data analysis, Nonparametric Bayes methods and decision procedures, Semiparametric models and procedures, Statistical methods for imaging and tomography, Statistical inverse problems, Financial statistics and econometrics, Bioinformatics and comparative genomics, Statistical algorithms and machine learning. Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order. Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.
期刊最新文献
Adaptive and efficient isotonic estimation in Wicksell's problem A general semi-parametric elliptical distribution model for semi-supervised learning Stone's theorem for distributional regression in Wasserstein distance Kernel density estimation for a stochastic process with values in a Riemannian manifold Functional index coefficient models for locally stationary time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1