首页 > 最新文献

Journal of Nonparametric Statistics最新文献

英文 中文
A comparison of causal inference methods for evaluating multiple treatment groups. 评价多治疗组的因果推理方法比较。
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2025-12-01 Epub Date: 2025-08-14 DOI: 10.1080/10485252.2025.2544936
Shuai Chen, Hao Wu, Hongwei Zhao

Causal inference is formulated using the counterfactual framework, enabling direct investigation of causal questions. Causal inference methods can incorporate machine learning techniques into the estimation process, allowing for more flexible models. However, the integration of machine learning methods adds complexity to statistical inference. In this paper, we systematically assess several methods for making causal inference with multiple treatment groups, including the outcome regression, inverse propensity score weighting, double-robust estimators, and their counterparts when employing a super learner in the estimation process, as well as the targeted maximum likelihood estimator (TMLE). We conduct numerical studies with complex data-generating models to evaluate these different estimators. Our results suggest that the double-robust estimator, when combined with machine learning, is the most favourable approach, demonstrating lower biases, a valid variance estimator, and improved coverage probabilities for the 95% confidence interval.

因果推理是使用反事实框架制定的,可以直接调查因果问题。因果推理方法可以将机器学习技术结合到估计过程中,从而允许更灵活的模型。然而,机器学习方法的集成增加了统计推断的复杂性。在本文中,我们系统地评估了几种与多治疗组进行因果推理的方法,包括结果回归,逆倾向评分加权,双稳健估计,以及在估计过程中使用超级学习者时的对应方法,以及目标最大似然估计器(TMLE)。我们使用复杂的数据生成模型进行数值研究,以评估这些不同的估计器。我们的研究结果表明,当与机器学习相结合时,双鲁棒估计器是最有利的方法,它显示出更低的偏差,有效的方差估计器,并提高了95%置信区间的覆盖概率。
{"title":"A comparison of causal inference methods for evaluating multiple treatment groups.","authors":"Shuai Chen, Hao Wu, Hongwei Zhao","doi":"10.1080/10485252.2025.2544936","DOIUrl":"10.1080/10485252.2025.2544936","url":null,"abstract":"<p><p>Causal inference is formulated using the counterfactual framework, enabling direct investigation of causal questions. Causal inference methods can incorporate machine learning techniques into the estimation process, allowing for more flexible models. However, the integration of machine learning methods adds complexity to statistical inference. In this paper, we systematically assess several methods for making causal inference with multiple treatment groups, including the outcome regression, inverse propensity score weighting, double-robust estimators, and their counterparts when employing a super learner in the estimation process, as well as the targeted maximum likelihood estimator (TMLE). We conduct numerical studies with complex data-generating models to evaluate these different estimators. Our results suggest that the double-robust estimator, when combined with machine learning, is the most favourable approach, demonstrating lower biases, a valid variance estimator, and improved coverage probabilities for the 95% confidence interval.</p>","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"37 4","pages":"1317-1340"},"PeriodicalIF":0.9,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12680010/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145702651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Avoiding the Surrogate Paradox: An Empirical Framework for Assessing Assumptions. 避免代理悖论:评估假设的经验框架。
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2025-05-12 DOI: 10.1080/10485252.2025.2498609
Emily Hsiao, Lu Tian, Layla Parast

The use of surrogate markers to replace a primary outcome in clinical trials has the potential to allow earlier decisions about the effectiveness of a treatment when a direct measurement of the primary outcome is difficult to obtain. However, the surrogate paradox, which occurs when a treatment has a positive effect on the surrogate marker but a negative effect on the primary outcome, may lead researchers to make incorrect conclusions about the treatment benefit. In this paper, we propose a formal nonparametric framework to empirically examine and test assumptions that ensure avoidance of the surrogate paradox. For each assumption, we propose a nonparametric hypothesis test, formally derive the properties of the test, and analyze its performance in finite samples in a variety of simulation settings. We apply our proposed testing framework to data from the the Diabetes Prevention Program clinical trial.

在临床试验中,使用替代标记物来代替主要结果,有可能在难以直接测量主要结果的情况下,更早地决定治疗的有效性。然而,替代悖论,即当一种治疗对替代标志物有积极影响,但对主要结果有消极影响时,可能导致研究人员对治疗益处做出错误的结论。在本文中,我们提出了一个正式的非参数框架,以经验检验和检验确保避免代理悖论的假设。对于每个假设,我们提出了一个非参数假设检验,正式推导了检验的性质,并分析了其在有限样本中的各种模拟设置中的性能。我们将我们提出的测试框架应用于糖尿病预防项目临床试验的数据。
{"title":"Avoiding the Surrogate Paradox: An Empirical Framework for Assessing Assumptions.","authors":"Emily Hsiao, Lu Tian, Layla Parast","doi":"10.1080/10485252.2025.2498609","DOIUrl":"https://doi.org/10.1080/10485252.2025.2498609","url":null,"abstract":"<p><p>The use of surrogate markers to replace a primary outcome in clinical trials has the potential to allow earlier decisions about the effectiveness of a treatment when a direct measurement of the primary outcome is difficult to obtain. However, the surrogate paradox, which occurs when a treatment has a positive effect on the surrogate marker but a negative effect on the primary outcome, may lead researchers to make incorrect conclusions about the treatment benefit. In this paper, we propose a formal nonparametric framework to empirically examine and test assumptions that ensure avoidance of the surrogate paradox. For each assumption, we propose a nonparametric hypothesis test, formally derive the properties of the test, and analyze its performance in finite samples in a variety of simulation settings. We apply our proposed testing framework to data from the the Diabetes Prevention Program clinical trial.</p>","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12382359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144976999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonparametric Density Estimation for Data Scattered on Irregular Spatial Domains: A Likelihood-Based Approach Using Bivariate Penalized Spline Smoothing. 不规则空间域离散数据的非参数密度估计:一种基于似然的二元惩罚样条平滑方法。
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2025-04-28 DOI: 10.1080/10485252.2025.2497541
Kunal Das, Shan Yu, Guannan Wang, Li Wang

Accurately estimating data density is crucial for making informed decisions and modeling in various fields. This paper presents a novel nonparametric density estimation procedure that utilizes bivariate penalized spline smoothing over triangulation for data scattered over irregular spatial domains. Our likelihood-based approach incorporates a regularization term addressing the roughness of the logarithm of density using a second-order differential operator. We establish the asymptotic convergence rate of the proposed density estimator in terms of the L 2 and L norms under mild natural conditions, providing a solid theoretical foundation. The proposed method demonstrates superior efficiency and flexibility with enhanced smoothness and continuity across the domain compared to existing techniques. We validate our approach through comprehensive simulation studies and apply it to real-world motor vehicle theft data from Portland, Oregon, illustrating its practical advantages in data analysis on spatial domains.

准确估计数据密度对于在各个领域做出明智的决策和建模至关重要。本文提出了一种新的非参数密度估计方法,该方法利用二元惩罚样条平滑而不是三角剖分来处理分散在不规则空间域上的数据。我们基于似然的方法包含一个正则化项,使用二阶微分算子处理密度对数的粗糙度。在温和的自然条件下,我们用l2范数和L∞范数建立了所提密度估计量的渐近收敛速率,提供了坚实的理论基础。与现有方法相比,该方法具有更高的效率和灵活性,并具有更强的平滑性和跨域连续性。我们通过全面的模拟研究验证了我们的方法,并将其应用于来自俄勒冈州波特兰市的真实机动车辆盗窃数据,说明了其在空间域数据分析中的实际优势。
{"title":"Nonparametric Density Estimation for Data Scattered on Irregular Spatial Domains: A Likelihood-Based Approach Using Bivariate Penalized Spline Smoothing.","authors":"Kunal Das, Shan Yu, Guannan Wang, Li Wang","doi":"10.1080/10485252.2025.2497541","DOIUrl":"10.1080/10485252.2025.2497541","url":null,"abstract":"<p><p>Accurately estimating data density is crucial for making informed decisions and modeling in various fields. This paper presents a novel nonparametric density estimation procedure that utilizes bivariate penalized spline smoothing over triangulation for data scattered over irregular spatial domains. Our likelihood-based approach incorporates a regularization term addressing the roughness of the logarithm of density using a second-order differential operator. We establish the asymptotic convergence rate of the proposed density estimator in terms of the <math> <msub><mrow><mi>L</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </math> and <math> <msub><mrow><mi>L</mi></mrow> <mrow><mo>∞</mo></mrow> </msub> </math> norms under mild natural conditions, providing a solid theoretical foundation. The proposed method demonstrates superior efficiency and flexibility with enhanced smoothness and continuity across the domain compared to existing techniques. We validate our approach through comprehensive simulation studies and apply it to real-world motor vehicle theft data from Portland, Oregon, illustrating its practical advantages in data analysis on spatial domains.</p>","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12393688/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144977013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regression analysis of multiplicative hazards model with time-dependent coefficient for sparse longitudinal covariates. 稀疏纵向协变量时变系数乘性风险模型的回归分析。
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2025-02-19 DOI: 10.1080/10485252.2025.2466649
Zhuowei Sun, Hongyuan Cao

We study the multiplicative hazards model with intermittently observed longitudinal covariates and time-varying coefficients. For such models, the existing ad hoc approach, such as the last value carried forward, is biased. We propose a kernel weighting approach to get an unbiased estimation of the non-parametric coefficient function and establish asymptotic normality for any fixed time point. Furthermore, we construct the simultaneous confidence band to examine the overall magnitude of the variation. Simulation studies support our theoretical predictions and show favorable performance of the proposed method. A data set from Alzheimer's Disease Neuroimaging Initiative study is used to illustrate our methodology.

研究了具有间断性观测纵向协变量和时变系数的乘法危险模型。对于这样的模型,现有的特别方法,比如最后一个值的结转,是有偏差的。我们提出了一种核加权方法来获得非参数系数函数的无偏估计,并建立了任意固定时间点的渐近正态性。此外,我们构建了同步置信带来检验变化的总体幅度。仿真研究支持了我们的理论预测,并表明了该方法的良好性能。一组来自阿尔茨海默病神经影像学倡议研究的数据被用来说明我们的方法。
{"title":"Regression analysis of multiplicative hazards model with time-dependent coefficient for sparse longitudinal covariates.","authors":"Zhuowei Sun, Hongyuan Cao","doi":"10.1080/10485252.2025.2466649","DOIUrl":"10.1080/10485252.2025.2466649","url":null,"abstract":"<p><p>We study the multiplicative hazards model with intermittently observed longitudinal covariates and time-varying coefficients. For such models, the existing <i>ad hoc</i> approach, such as the last value carried forward, is biased. We propose a kernel weighting approach to get an unbiased estimation of the non-parametric coefficient function and establish asymptotic normality for any fixed time point. Furthermore, we construct the simultaneous confidence band to examine the overall magnitude of the variation. Simulation studies support our theoretical predictions and show favorable performance of the proposed method. A data set from Alzheimer's Disease Neuroimaging Initiative study is used to illustrate our methodology.</p>","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145233977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TSSS: A Novel Triangulated Spherical Spline Smoothing for Surface-Based Data. 一种新的基于曲面数据的三角球面样条平滑方法。
IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2025-01-01 Epub Date: 2025-01-07 DOI: 10.1080/10485252.2025.2449886
Zhiling Gu, Shan Yu, Guannan Wang, Ming-Jun Lai, Lily Wang

Surface-based data are prevalent across diverse practical applications in various fields. This paper introduces a novel nonparametric method to discover the underlying signals from data distributed on complex surface-based domains. The proposed approach involves a penalized spline estimator defined on a triangulation of surface patches, enabling effective signal extraction and recovery. The proposed method offers superior handling of "leakage" or "boundary effects" over complex domains, enhanced computational efficiency, and capabilities for analyzing sparse and irregularly distributed data on complex objects. We provide rigorous theoretical guarantees, including convergence rates and asymptotic normality of the estimators. We demonstrate that the convergence rates are optimal within the framework of nonparametric estimation. A bootstrap method is introduced to quantify the uncertainty in the proposed estimators and to provide pointwise confidence intervals. The advantages of the proposed method are demonstrated through simulations and data applications on cortical surface neuroimaging data and oceanic near-surface atmospheric data.

基于表面的数据在各个领域的各种实际应用中都很普遍。本文介绍了一种从分布在复杂表面域的数据中发现底层信号的非参数方法。所提出的方法包括在表面斑块的三角剖分上定义一个惩罚样条估计量,从而实现有效的信号提取和恢复。该方法对复杂域上的“泄漏”或“边界效应”提供了更好的处理,提高了计算效率,并具有分析复杂对象上稀疏和不规则分布数据的能力。我们提供了严格的理论保证,包括收敛率和渐近正态性。我们证明了在非参数估计框架下的收敛速度是最优的。引入了一种自举方法来量化所提出的估计量中的不确定性,并提供了点态置信区间。通过对皮层表面神经成像数据和海洋近地表大气数据的模拟和数据应用,证明了该方法的优越性。
{"title":"TSSS: A Novel Triangulated Spherical Spline Smoothing for Surface-Based Data.","authors":"Zhiling Gu, Shan Yu, Guannan Wang, Ming-Jun Lai, Lily Wang","doi":"10.1080/10485252.2025.2449886","DOIUrl":"10.1080/10485252.2025.2449886","url":null,"abstract":"<p><p>Surface-based data are prevalent across diverse practical applications in various fields. This paper introduces a novel nonparametric method to discover the underlying signals from data distributed on complex surface-based domains. The proposed approach involves a penalized spline estimator defined on a triangulation of surface patches, enabling effective signal extraction and recovery. The proposed method offers superior handling of \"leakage\" or \"boundary effects\" over complex domains, enhanced computational efficiency, and capabilities for analyzing sparse and irregularly distributed data on complex objects. We provide rigorous theoretical guarantees, including convergence rates and asymptotic normality of the estimators. We demonstrate that the convergence rates are optimal within the framework of nonparametric estimation. A bootstrap method is introduced to quantify the uncertainty in the proposed estimators and to provide pointwise confidence intervals. The advantages of the proposed method are demonstrated through simulations and data applications on cortical surface neuroimaging data and oceanic near-surface atmospheric data.</p>","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"37 3","pages":"683-712"},"PeriodicalIF":0.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419768/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145042194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive and efficient isotonic estimation in Wicksell's problem 维克塞尔问题中的自适应高效等差数列估计
IF 1.2 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-09-10 DOI: 10.1080/10485252.2024.2397680
Francesco Gili, Geurt Jongbloed, Aad van der Vaart
We consider nonparametric estimation in Wicksell's problem, which has applications in astronomy for estimating the distribution of star positions in a galaxy and in material sciences for determinin...
我们考虑了维克塞尔问题中的非参数估计,该问题在天文学中应用于估计星系中恒星位置的分布,在材料科学中应用于确定恒星位置的分布。
{"title":"Adaptive and efficient isotonic estimation in Wicksell's problem","authors":"Francesco Gili, Geurt Jongbloed, Aad van der Vaart","doi":"10.1080/10485252.2024.2397680","DOIUrl":"https://doi.org/10.1080/10485252.2024.2397680","url":null,"abstract":"We consider nonparametric estimation in Wicksell's problem, which has applications in astronomy for estimating the distribution of star positions in a galaxy and in material sciences for determinin...","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"30 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A general semi-parametric elliptical distribution model for semi-supervised learning 用于半监督学习的通用半参数椭圆分布模型
IF 1.2 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-08-20 DOI: 10.1080/10485252.2024.2393725
Chin-Tsang Chiang, Sheng-Hsin Fan, Ming-Yueh Huang, Jen-Chieh Teng, Alvin Lim
This research proposes a novel semi-parametric elliptical distribution model for application in semi-supervised learning tasks. We use labelled and unlabelled data to develop a pseudo maximum likel...
本研究提出了一种新颖的半参数椭圆分布模型,可用于半监督学习任务。我们使用有标签和无标签的数据来开发一种伪最大似然法。
{"title":"A general semi-parametric elliptical distribution model for semi-supervised learning","authors":"Chin-Tsang Chiang, Sheng-Hsin Fan, Ming-Yueh Huang, Jen-Chieh Teng, Alvin Lim","doi":"10.1080/10485252.2024.2393725","DOIUrl":"https://doi.org/10.1080/10485252.2024.2393725","url":null,"abstract":"This research proposes a novel semi-parametric elliptical distribution model for application in semi-supervised learning tasks. We use labelled and unlabelled data to develop a pseudo maximum likel...","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"6 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stone's theorem for distributional regression in Wasserstein distance 瓦瑟斯坦距离分布回归的斯通定理
IF 1.2 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-08-17 DOI: 10.1080/10485252.2024.2393172
Clément Dombry, Thibault Modeste, Romain Pic
We extend the celebrated Stone's theorem to the framework of distributional regression. More precisely, we prove that weighted empirical distributions with local probability weights satisfying the ...
我们将著名的斯通定理扩展到分布回归框架。更准确地说,我们证明了加权经验分布的局部概率权重满足...
{"title":"Stone's theorem for distributional regression in Wasserstein distance","authors":"Clément Dombry, Thibault Modeste, Romain Pic","doi":"10.1080/10485252.2024.2393172","DOIUrl":"https://doi.org/10.1080/10485252.2024.2393172","url":null,"abstract":"We extend the celebrated Stone's theorem to the framework of distributional regression. More precisely, we prove that weighted empirical distributions with local probability weights satisfying the ...","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"12 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142227341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kernel density estimation for a stochastic process with values in a Riemannian manifold 具有黎曼流形中数值的随机过程的核密度估计
IF 1.2 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-08-13 DOI: 10.1080/10485252.2024.2382442
Mohamed Abdillahi Isman, Wiem Nefzi, Papa Mbaye, Salah Khardani, Anne-Françoise Yao
This paper is related to the issue of the density estimation of observations with values in a Riemannian submanifold. In this context, Henry and Rodriguez ((2009), ‘Kernel Density Estimation on Rie...
本文与黎曼子实体中观测值的密度估计问题有关。在这方面,Henry 和 Rodriguez(2009 年)的 "Kernel Density Estimation on Rie...
{"title":"Kernel density estimation for a stochastic process with values in a Riemannian manifold","authors":"Mohamed Abdillahi Isman, Wiem Nefzi, Papa Mbaye, Salah Khardani, Anne-Françoise Yao","doi":"10.1080/10485252.2024.2382442","DOIUrl":"https://doi.org/10.1080/10485252.2024.2382442","url":null,"abstract":"This paper is related to the issue of the density estimation of observations with values in a Riemannian submanifold. In this context, Henry and Rodriguez ((2009), ‘Kernel Density Estimation on Rie...","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"3 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142220145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional index coefficient models for locally stationary time series 局部静止时间序列的函数指数系数模型
IF 1.2 4区 数学 Q3 STATISTICS & PROBABILITY Pub Date : 2024-08-05 DOI: 10.1080/10485252.2024.2387781
Xin Guan, Qunfang Xu, Jinhong You, Yong Zhou
In the analysis of nonlinear time series, we propose a novel functional index coefficient model for the locally stationary data. The proposed model can effectively capture the dynamic interaction e...
在非线性时间序列分析中,我们提出了一种针对局部静止数据的新型函数指数系数模型。所提出的模型能有效捕捉非线性时间序列中的动态交互效应。
{"title":"Functional index coefficient models for locally stationary time series","authors":"Xin Guan, Qunfang Xu, Jinhong You, Yong Zhou","doi":"10.1080/10485252.2024.2387781","DOIUrl":"https://doi.org/10.1080/10485252.2024.2387781","url":null,"abstract":"In the analysis of nonlinear time series, we propose a novel functional index coefficient model for the locally stationary data. The proposed model can effectively capture the dynamic interaction e...","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"59 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Nonparametric Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1