Modelling of Peristaltic Pumps with Respect to Viscoelastic Tube Material Properties and Fatigue Effects

IF 1.8 Q3 MECHANICS Fluids Pub Date : 2023-09-19 DOI:10.3390/fluids8090254
Marco Hostettler, Raphael Grüter, Simon Stingelin, Flavio De Lorenzi, Rudolf M. Fuechslin, Cyrill Jacomet, Stephan Koll, Dirk Wilhelm, Gernot K. Boiger
{"title":"Modelling of Peristaltic Pumps with Respect to Viscoelastic Tube Material Properties and Fatigue Effects","authors":"Marco Hostettler, Raphael Grüter, Simon Stingelin, Flavio De Lorenzi, Rudolf M. Fuechslin, Cyrill Jacomet, Stephan Koll, Dirk Wilhelm, Gernot K. Boiger","doi":"10.3390/fluids8090254","DOIUrl":null,"url":null,"abstract":"Peristaltic pump technology is widely used wherever relatively low, highly accurately dosed volumetric flow rates are required and where fluid contamination must be excluded. Thus, typical fields of application include food, pharmaceuticals, medical technology, and analytics. In certain cases, when applied in conjunction with polymer-based tubing material, supplied peristaltic flow rates are reported to be significantly lower than the expected set flow rates. Said flow rate reductions are related to (i) the chosen tube material, (ii) tube material fatigue effects, and (iii) the applied pump frequency. This work presents a fast, dynamic, multiphysics, 1D peristaltic pump solver, which is demonstrated to capture all qualitatively relevant effects in terms of peristaltic flow rate reduction within linear peristaltic pumps. The numerical solver encompasses laminar fluid dynamics, geometric restrictions provided by peristaltic pump operation, as well as viscoelastic tube material properties and tube material fatigue effects. A variety of validation experiments were conducted within this work. The experiments point to the high degree of quantitative accuracy of the novel software and qualify it as the basis for elaborating an a priori drive correction.","PeriodicalId":12397,"journal":{"name":"Fluids","volume":"206 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids8090254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Peristaltic pump technology is widely used wherever relatively low, highly accurately dosed volumetric flow rates are required and where fluid contamination must be excluded. Thus, typical fields of application include food, pharmaceuticals, medical technology, and analytics. In certain cases, when applied in conjunction with polymer-based tubing material, supplied peristaltic flow rates are reported to be significantly lower than the expected set flow rates. Said flow rate reductions are related to (i) the chosen tube material, (ii) tube material fatigue effects, and (iii) the applied pump frequency. This work presents a fast, dynamic, multiphysics, 1D peristaltic pump solver, which is demonstrated to capture all qualitatively relevant effects in terms of peristaltic flow rate reduction within linear peristaltic pumps. The numerical solver encompasses laminar fluid dynamics, geometric restrictions provided by peristaltic pump operation, as well as viscoelastic tube material properties and tube material fatigue effects. A variety of validation experiments were conducted within this work. The experiments point to the high degree of quantitative accuracy of the novel software and qualify it as the basis for elaborating an a priori drive correction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粘弹性管材料特性和疲劳效应的蠕动泵建模
蠕动泵技术广泛应用于需要相对较低,高度精确的剂量体积流量和必须排除流体污染的地方。因此,典型的应用领域包括食品、制药、医疗技术和分析。在某些情况下,当与聚合物基油管材料结合使用时,提供的蠕动流速据报道明显低于预期的设定流速。所述流量降低与(i)所选择的管道材料,(ii)管道材料疲劳效应,以及(iii)所应用的泵频率有关。这项工作提出了一个快速、动态、多物理场、一维蠕动泵求解器,它被证明可以捕获线性蠕动泵内蠕动流量降低方面的所有定性相关效应。数值求解包括层流动力学、蠕动泵运行提供的几何限制、粘弹性管材料特性和管材料疲劳效应。在这项工作中进行了各种验证实验。实验表明,新软件具有高度的定量准确性,并将其作为阐述先验驱动校正的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fluids
Fluids Engineering-Mechanical Engineering
CiteScore
3.40
自引率
10.50%
发文量
326
审稿时长
12 weeks
期刊最新文献
Deeper Flow Behavior Explanation of Temperature Effects on the Fluid Dynamic inside a Tundish Continuous Eddy Simulation vs. Resolution-Imposing Simulation Methods for Turbulent Flows Application of Machine Learning Algorithms in Predicting Rheological Behavior of BN-diamond/Thermal Oil Hybrid Nanofluids A Spectral/hp-Based Stabilized Solver with Emphasis on the Euler Equations Quantitative Color Schlieren for an H2–O2 Exhaust Jet Developing in Air
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1