Fragile watermarking for image authentication using dyadic walsh ordering

Prajanto Wahyu Adi, Adi Wibowo, Guruh Aryotejo, Ferda Ernawan
{"title":"Fragile watermarking for image authentication using dyadic walsh ordering","authors":"Prajanto Wahyu Adi, Adi Wibowo, Guruh Aryotejo, Ferda Ernawan","doi":"10.26555/ijain.v9i3.1017","DOIUrl":null,"url":null,"abstract":"A digital image is subjected to the most manipulation. This is driven by the easy manipulating process through image editing software which is growing rapidly. These problems can be solved through the watermarking model as an active authentication system for the image. One of the most popular methods is Singular Value Decomposition (SVD) which has good imperceptibility and detection capabilities. Nevertheless, SVD has high complexity and can only utilize one singular matrix S, and ignore two orthogonal matrices. This paper proposes the use of the Walsh matrix with dyadic ordering to generate a new S matrix without the orthogonal matrices. The experimental results showed that the proposed method was able to reduce computational time by 22% and 13% compared to the SVD-based method and similar methods based on the Hadamard matrix respectively. This research can be used as a reference to speed up the computing time of the watermarking methods without compromising the level of imperceptibility and authentication.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26555/ijain.v9i3.1017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A digital image is subjected to the most manipulation. This is driven by the easy manipulating process through image editing software which is growing rapidly. These problems can be solved through the watermarking model as an active authentication system for the image. One of the most popular methods is Singular Value Decomposition (SVD) which has good imperceptibility and detection capabilities. Nevertheless, SVD has high complexity and can only utilize one singular matrix S, and ignore two orthogonal matrices. This paper proposes the use of the Walsh matrix with dyadic ordering to generate a new S matrix without the orthogonal matrices. The experimental results showed that the proposed method was able to reduce computational time by 22% and 13% compared to the SVD-based method and similar methods based on the Hadamard matrix respectively. This research can be used as a reference to speed up the computing time of the watermarking methods without compromising the level of imperceptibility and authentication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用二进沃尔什排序的图像认证脆弱水印
数字图像受到最多的操纵。这是由于通过快速增长的图像编辑软件易于操作的过程所驱动的。这些问题都可以通过水印模型作为图像的主动认证系统来解决。其中最流行的一种方法是奇异值分解(SVD),它具有良好的不可感知性和检测能力。然而,奇异值分解具有较高的复杂度,只能利用一个奇异矩阵S,而忽略两个正交矩阵。本文提出利用带二进排序的Walsh矩阵来生成一个不含正交矩阵的新S矩阵。实验结果表明,与基于奇异值分解的方法和基于Hadamard矩阵的类似方法相比,该方法的计算时间分别减少了22%和13%。该研究可为在不影响不可感知性和认证性的前提下,加快水印算法的计算时间提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Advances in Intelligent Informatics
International Journal of Advances in Intelligent Informatics Computer Science-Computer Vision and Pattern Recognition
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Emergency sign language recognition from variant of convolutional neural network (CNN) and long short term memory (LSTM) models Self-supervised few-shot learning for real-time traffic sign classification Hybrid machine learning model based on feature decomposition and entropy optimization for higher accuracy flood forecasting Imputation of missing microclimate data of coffee-pine agroforestry with machine learning Scientific reference style using rule-based machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1