Pub Date : 2024-02-29DOI: 10.26555/ijain.v10i1.1522
Anh-Khoa Tho Nguyen, Tin Tran, Phuc Hong Nguyen, V. Q. Dinh
Although supervised approaches for traffic sign classification have demonstrated excellent performance, they are limited to classifying several traffic signs defined in the training dataset. This prevents them from being applied to different domains, i.e., different countries. Herein, we propose a self-supervised approach for few-shot learning-based traffic sign classification. A center-awareness similarity network is designed for the traffic sign problem and trained using an optical flow dataset. Unlike existing supervised traffic sign classification methods, the proposed method does not depend on traffic sign categories defined by the training dataset. It applies to any traffic signs from different countries. We construct a Korean traffic sign classification (KTSC) dataset, including 6000 traffic sign samples and 59 categories. We evaluate the proposed method with baseline methods using the KTSC, German traffic sign, and Belgian traffic sign classification datasets. Experimental results show that the proposed method extends the ability of existing supervised methods and can classify any traffic sign, regardless of region/country dependence. Furthermore, the proposed approach significantly outperforms baseline methods for patch similarity. This approach provides a flexible and robust solution for classifying traffic signs, allowing for accurate categorization of every traffic sign, regardless of regional or national differences.
{"title":"Self-supervised few-shot learning for real-time traffic sign classification","authors":"Anh-Khoa Tho Nguyen, Tin Tran, Phuc Hong Nguyen, V. Q. Dinh","doi":"10.26555/ijain.v10i1.1522","DOIUrl":"https://doi.org/10.26555/ijain.v10i1.1522","url":null,"abstract":"Although supervised approaches for traffic sign classification have demonstrated excellent performance, they are limited to classifying several traffic signs defined in the training dataset. This prevents them from being applied to different domains, i.e., different countries. Herein, we propose a self-supervised approach for few-shot learning-based traffic sign classification. A center-awareness similarity network is designed for the traffic sign problem and trained using an optical flow dataset. Unlike existing supervised traffic sign classification methods, the proposed method does not depend on traffic sign categories defined by the training dataset. It applies to any traffic signs from different countries. We construct a Korean traffic sign classification (KTSC) dataset, including 6000 traffic sign samples and 59 categories. We evaluate the proposed method with baseline methods using the KTSC, German traffic sign, and Belgian traffic sign classification datasets. Experimental results show that the proposed method extends the ability of existing supervised methods and can classify any traffic sign, regardless of region/country dependence. Furthermore, the proposed approach significantly outperforms baseline methods for patch similarity. This approach provides a flexible and robust solution for classifying traffic signs, allowing for accurate categorization of every traffic sign, regardless of regional or national differences.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"2012 23","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140416245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-29DOI: 10.26555/ijain.v10i1.1170
M. A. As’ari, N. A. J. Sufri, Guat Si Qi
Sign language is the primary communication tool used by the deaf community and people with speaking difficulties, especially during emergencies. Numerous deep learning models have been proposed to solve the sign language recognition problem. Recently. Bidirectional LSTM (BLSTM) has been proposed and used in replacement of Long Short-Term Memory (LSTM) as it may improve learning long-team dependencies as well as increase the accuracy of the model. However, there needs to be more comparison for the performance of LSTM and BLSTM in LRCN model architecture in sign language interpretation applications. Therefore, this study focused on the dense analysis of the LRCN model, including 1) training the CNN from scratch and 2) modeling with pre-trained CNN, VGG-19, and ResNet50. Other than that, the ConvLSTM model, a special variant of LSTM designed for video input, has also been modeled and compared with the LRCN in representing emergency sign language recognition. Within LRCN variants, the performance of a small CNN network was compared with pre-trained VGG-19 and ResNet50V2. A dataset of emergency Indian Sign Language with eight classes is used to train the models. The model with the best performance is the VGG-19 + LSTM model, with a testing accuracy of 96.39%. Small LRCN networks, which are 5 CNN subunits + LSTM and 4 CNN subunits + BLSTM, have 95.18% testing accuracy. This performance is on par with our best-proposed model, VGG + LSTM. By incorporating bidirectional LSTM (BLSTM) into deep learning models, the ability to understand long-term dependencies can be improved. This can enhance accuracy in reading sign language, leading to more effective communication during emergencies.
{"title":"Emergency sign language recognition from variant of convolutional neural network (CNN) and long short term memory (LSTM) models","authors":"M. A. As’ari, N. A. J. Sufri, Guat Si Qi","doi":"10.26555/ijain.v10i1.1170","DOIUrl":"https://doi.org/10.26555/ijain.v10i1.1170","url":null,"abstract":"Sign language is the primary communication tool used by the deaf community and people with speaking difficulties, especially during emergencies. Numerous deep learning models have been proposed to solve the sign language recognition problem. Recently. Bidirectional LSTM (BLSTM) has been proposed and used in replacement of Long Short-Term Memory (LSTM) as it may improve learning long-team dependencies as well as increase the accuracy of the model. However, there needs to be more comparison for the performance of LSTM and BLSTM in LRCN model architecture in sign language interpretation applications. Therefore, this study focused on the dense analysis of the LRCN model, including 1) training the CNN from scratch and 2) modeling with pre-trained CNN, VGG-19, and ResNet50. Other than that, the ConvLSTM model, a special variant of LSTM designed for video input, has also been modeled and compared with the LRCN in representing emergency sign language recognition. Within LRCN variants, the performance of a small CNN network was compared with pre-trained VGG-19 and ResNet50V2. A dataset of emergency Indian Sign Language with eight classes is used to train the models. The model with the best performance is the VGG-19 + LSTM model, with a testing accuracy of 96.39%. Small LRCN networks, which are 5 CNN subunits + LSTM and 4 CNN subunits + BLSTM, have 95.18% testing accuracy. This performance is on par with our best-proposed model, VGG + LSTM. By incorporating bidirectional LSTM (BLSTM) into deep learning models, the ability to understand long-term dependencies can be improved. This can enhance accuracy in reading sign language, leading to more effective communication during emergencies.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"3 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140408506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.26555/ijain.v10i1.1130
Nazli Mohd Khairudin, N. Mustapha, Teh Noranis Mohd Aris, M. Zolkepli
The advancement of machine learning model has widely been adopted to provide flood forecast. However, the model must deal with the challenges to determine the most important features to be used in in flood forecast with high-dimensional non-linear time series when involving data from various stations. Decomposition of time-series data such as empirical mode decomposition, ensemble empirical mode decomposition and discrete wavelet transform are widely used for optimization of input; however, they have been done for single dimension time-series data which are unable to determine relationships between data in high dimensional time series. In this study, hybrid machine learning models are developed based on this feature decomposition to forecast the monthly water level using monthly rainfall data. Rainfall data from eight stations in Kelantan River Basin are used in the hybrid model. To effectively select the best rainfall data from the multi-stations that provide higher accuracy, these rainfall data are analyzed with entropy called Mutual Information that measure the uncertainty of random variables from various stations. Mutual Information act as optimization method helps the researcher to select the appropriate features to score higher accuracy of the model. The experimental evaluations proved that the hybrid machine learning model based on the feature decomposition and ranked by Mutual Information can increase the accuracy of water level forecasting. This outcome will help the authorities in managing the risk of flood and helping people in the evacuation process as an early warning can be assigned and disseminate to the citizen.
{"title":"Hybrid machine learning model based on feature decomposition and entropy optimization for higher accuracy flood forecasting","authors":"Nazli Mohd Khairudin, N. Mustapha, Teh Noranis Mohd Aris, M. Zolkepli","doi":"10.26555/ijain.v10i1.1130","DOIUrl":"https://doi.org/10.26555/ijain.v10i1.1130","url":null,"abstract":"The advancement of machine learning model has widely been adopted to provide flood forecast. However, the model must deal with the challenges to determine the most important features to be used in in flood forecast with high-dimensional non-linear time series when involving data from various stations. Decomposition of time-series data such as empirical mode decomposition, ensemble empirical mode decomposition and discrete wavelet transform are widely used for optimization of input; however, they have been done for single dimension time-series data which are unable to determine relationships between data in high dimensional time series. In this study, hybrid machine learning models are developed based on this feature decomposition to forecast the monthly water level using monthly rainfall data. Rainfall data from eight stations in Kelantan River Basin are used in the hybrid model. To effectively select the best rainfall data from the multi-stations that provide higher accuracy, these rainfall data are analyzed with entropy called Mutual Information that measure the uncertainty of random variables from various stations. Mutual Information act as optimization method helps the researcher to select the appropriate features to score higher accuracy of the model. The experimental evaluations proved that the hybrid machine learning model based on the feature decomposition and ranked by Mutual Information can increase the accuracy of water level forecasting. This outcome will help the authorities in managing the risk of flood and helping people in the evacuation process as an early warning can be assigned and disseminate to the citizen.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"75 19","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140463108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.26555/ijain.v10i1.1439
H. Nurwarsito, D. Suprayogo, S. P. Sakti, Cahyo Prayogo, Novanto Yudistira, Muhammad Rifqi Fauzi, Simon Oakley, W. Mahmudy
This research presents a comprehensive analysis of various imputation methods for addressing missing microclimate data in the context of coffee-pine agroforestry land in UB Forest. Utilizing Big data and Machine learning methods, the research evaluates the effectiveness of imputation missing microclimate data with Interpolation, Shifted Interpolation, K-Nearest Neighbors (KNN), and Linear Regression methods across multiple time frames - 6 hours, daily, weekly, and monthly. The performance of these methods is meticulously assessed using four key evaluation metrics Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). The results indicate that Linear Regression consistently outperforms other methods across all time frames, demonstrating the lowest error rates in terms of MAE, MSE, RMSE, and MAPE. This finding underscores the robustness and precision of Linear Regression in handling the variability inherent in microclimate data within agroforestry systems. The research highlights the critical role of accurate data imputation in agroforestry research and points towards the potential of machine learning techniques in advancing environmental data analysis. The insights gained from this research contribute significantly to the field of environmental science, offering a reliable methodological approach for enhancing the accuracy of microclimate models in agroforestry, thereby facilitating informed decision-making for sustainable ecosystem management.
{"title":"Imputation of missing microclimate data of coffee-pine agroforestry with machine learning","authors":"H. Nurwarsito, D. Suprayogo, S. P. Sakti, Cahyo Prayogo, Novanto Yudistira, Muhammad Rifqi Fauzi, Simon Oakley, W. Mahmudy","doi":"10.26555/ijain.v10i1.1439","DOIUrl":"https://doi.org/10.26555/ijain.v10i1.1439","url":null,"abstract":"This research presents a comprehensive analysis of various imputation methods for addressing missing microclimate data in the context of coffee-pine agroforestry land in UB Forest. Utilizing Big data and Machine learning methods, the research evaluates the effectiveness of imputation missing microclimate data with Interpolation, Shifted Interpolation, K-Nearest Neighbors (KNN), and Linear Regression methods across multiple time frames - 6 hours, daily, weekly, and monthly. The performance of these methods is meticulously assessed using four key evaluation metrics Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE). The results indicate that Linear Regression consistently outperforms other methods across all time frames, demonstrating the lowest error rates in terms of MAE, MSE, RMSE, and MAPE. This finding underscores the robustness and precision of Linear Regression in handling the variability inherent in microclimate data within agroforestry systems. The research highlights the critical role of accurate data imputation in agroforestry research and points towards the potential of machine learning techniques in advancing environmental data analysis. The insights gained from this research contribute significantly to the field of environmental science, offering a reliable methodological approach for enhancing the accuracy of microclimate models in agroforestry, thereby facilitating informed decision-making for sustainable ecosystem management.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"29 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140464918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-30DOI: 10.26555/ijain.v9i3.1056
Afrida Helen, Aditya Pradana, Muhammad Afif
Regular Expressions (RegEx) can be employed as a technique for supervised learning to define and search for specific patterns inside text. This work devised a method that utilizes regular expressions to convert the reference style of academic papers into several styles, dependent on the specific needs of the target publication or conference. Our research aimed to detect distinctive patterns of reference styles using RegEx and compare them with a dataset including various reference styles. We gathered a diverse range of reference format categories, encompassing seven distinct classes, from various sources such as academic papers, journals, conference proceedings, and books. Our approach involves employing RegEx to convert one referencing format to another based on the user's specific preferences. The proposed model demonstrated an accuracy of 57.26% for book references and 57.56% for journal references. We used the similarity ratio and Levenshtein distance to evaluate the dataset's performance. The model achieved a 97.8% similarity ratio with a Levenshtein distance of 2. Notably, the APA style for journal references yielded the best results. However, the effectiveness of the extraction function varies depending on the reference style. For APA style, the model showed a 99.97% similarity ratio with a Levenshtein distance of 1. Overall, our proposed model outperforms baseline machine learning models in this task. This study introduces an automated program that utilizes regular expressions to modify academic reference formats. This will enhance the efficiency, precision, and adaptability of academic publishing.
{"title":"Scientific reference style using rule-based machine learning","authors":"Afrida Helen, Aditya Pradana, Muhammad Afif","doi":"10.26555/ijain.v9i3.1056","DOIUrl":"https://doi.org/10.26555/ijain.v9i3.1056","url":null,"abstract":"Regular Expressions (RegEx) can be employed as a technique for supervised learning to define and search for specific patterns inside text. This work devised a method that utilizes regular expressions to convert the reference style of academic papers into several styles, dependent on the specific needs of the target publication or conference. Our research aimed to detect distinctive patterns of reference styles using RegEx and compare them with a dataset including various reference styles. We gathered a diverse range of reference format categories, encompassing seven distinct classes, from various sources such as academic papers, journals, conference proceedings, and books. Our approach involves employing RegEx to convert one referencing format to another based on the user's specific preferences. The proposed model demonstrated an accuracy of 57.26% for book references and 57.56% for journal references. We used the similarity ratio and Levenshtein distance to evaluate the dataset's performance. The model achieved a 97.8% similarity ratio with a Levenshtein distance of 2. Notably, the APA style for journal references yielded the best results. However, the effectiveness of the extraction function varies depending on the reference style. For APA style, the model showed a 99.97% similarity ratio with a Levenshtein distance of 1. Overall, our proposed model outperforms baseline machine learning models in this task. This study introduces an automated program that utilizes regular expressions to modify academic reference formats. This will enhance the efficiency, precision, and adaptability of academic publishing.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"67 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139202302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-30DOI: 10.26555/ijain.v9i3.1434
Mengqin Yu, Y. Lee, Junghui Chen
The traditional fault diagnosis models cannot achieve good fault diagnosis accuracy when a new unseen fault class appears in the test set, but there is no training sample of this fault in the training set. Therefore, studying the unseen cause-effect problem of fault symptoms is extremely challenging. As various faults often occur in a chemical plant, it is necessary to perform fault causal-effect diagnosis to find the root cause of the fault. However, only some fault causal-effect data are always available to construct a reliable causal-effect diagnosis model. Another worst thing is that measurement noise often contaminates the collected data. The above problems are very common in industrial operations. However, past-developed data-driven approaches rarely include causal-effect relationships between variables, particularly in the zero-shot of causal-effect relationships. This would cause incorrect inference of seen faults and make it impossible to predict unseen faults. This study effectively combines zero-shot learning, conditional variational autoencoders (CVAE), and the signed directed graph (SDG) to solve the above problems. Specifically, the learning approach that determines the cause-effect of all the faults using SDG with physics knowledge to obtain the fault description. SDG is used to determine the attributes of the seen and unseen faults. Instead of the seen fault label space, attributes can easily create an unseen fault space from a seen fault space. After having the corresponding attribute spaces of the failure cause, some failure causes are learned in advance by a CVAE model from the available fault data. The advantage of the CVAE is that process variables are mapped into the latent space for dimension reduction and measurement noise deduction; the latent data can more accurately represent the actual behavior of the process. Then, with the extended space spanned by unseen attributes, the migration capabilities can predict the unseen causes of failure and infer the causes of the unseen failures. Finally, the feasibility of the proposed method is verified by the data collected from chemical reaction processes.
{"title":"Fault diagnosis-based SDG transfer for zero-sample fault symptom","authors":"Mengqin Yu, Y. Lee, Junghui Chen","doi":"10.26555/ijain.v9i3.1434","DOIUrl":"https://doi.org/10.26555/ijain.v9i3.1434","url":null,"abstract":"The traditional fault diagnosis models cannot achieve good fault diagnosis accuracy when a new unseen fault class appears in the test set, but there is no training sample of this fault in the training set. Therefore, studying the unseen cause-effect problem of fault symptoms is extremely challenging. As various faults often occur in a chemical plant, it is necessary to perform fault causal-effect diagnosis to find the root cause of the fault. However, only some fault causal-effect data are always available to construct a reliable causal-effect diagnosis model. Another worst thing is that measurement noise often contaminates the collected data. The above problems are very common in industrial operations. However, past-developed data-driven approaches rarely include causal-effect relationships between variables, particularly in the zero-shot of causal-effect relationships. This would cause incorrect inference of seen faults and make it impossible to predict unseen faults. This study effectively combines zero-shot learning, conditional variational autoencoders (CVAE), and the signed directed graph (SDG) to solve the above problems. Specifically, the learning approach that determines the cause-effect of all the faults using SDG with physics knowledge to obtain the fault description. SDG is used to determine the attributes of the seen and unseen faults. Instead of the seen fault label space, attributes can easily create an unseen fault space from a seen fault space. After having the corresponding attribute spaces of the failure cause, some failure causes are learned in advance by a CVAE model from the available fault data. The advantage of the CVAE is that process variables are mapped into the latent space for dimension reduction and measurement noise deduction; the latent data can more accurately represent the actual behavior of the process. Then, with the extended space spanned by unseen attributes, the migration capabilities can predict the unseen causes of failure and infer the causes of the unseen failures. Finally, the feasibility of the proposed method is verified by the data collected from chemical reaction processes.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139207627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agricultural images such as fruits and vegetables have previously been recognised and classified using image analysis and computer vision techniques. Mangoes are currently being classified manually, whereby mango sellers must laboriously identify mangoes by hand. This is time-consuming and tedious. In this work, TensorFlow Lite was used as a transfer learning tool. Transfer learning is a fast approach in resolving classification problems effectively using small datasets. This work involves six categories, where four mango types are classified (Harum Manis, Langra, Dasheri and Sindhri), categories for other types of mangoes, and a non-mango category. Each category dataset comprises 100 images, and is split 70/30 between the training and testing set, respectively. This work was undertaken with a mobile-based application that can be used to distinguish various types of mangoes based on the proposed transfer learning method. The results obtained from the conducted experiment show that adopted transfer learning can achieve an accuracy of 95% for mango recognition. A preliminary user acceptance survey was also carried out to investigate the user’s requirements, the effectiveness of the proposed functionalities, and the ease of use of its proposed interfaces, with promising results.
水果和蔬菜等农业图像以前都是通过图像分析和计算机视觉技术进行识别和分类的。芒果目前采用人工分类,芒果销售商必须费力地手工识别芒果。这既耗时又乏味。在这项工作中,TensorFlow Lite 被用作迁移学习工具。迁移学习是一种利用小型数据集有效解决分类问题的快速方法。这项工作涉及六个类别,其中四个芒果类别(Harum Manis、Langra、Dasheri 和 Sindhri)、其他芒果类别和一个非芒果类别。每个类别的数据集由 100 张图片组成,训练集和测试集各占 70/30。这项工作是通过一个基于移动设备的应用程序来完成的,该应用程序可根据所提出的迁移学习方法来区分各种类型的芒果。实验结果表明,采用迁移学习法识别芒果的准确率可达 95%。此外,还进行了初步的用户接受度调查,以了解用户的需求、拟议功能的有效性以及拟议界面的易用性,结果令人鼓舞。
{"title":"Deep learning mango fruits recognition based on tensorflow lite","authors":"M. Mustaffa, Aainaa Azullya Idris, Lili Nurliyana Abdullah, Nurul Amelina Nasharuddin","doi":"10.26555/ijain.v9i3.1368","DOIUrl":"https://doi.org/10.26555/ijain.v9i3.1368","url":null,"abstract":"Agricultural images such as fruits and vegetables have previously been recognised and classified using image analysis and computer vision techniques. Mangoes are currently being classified manually, whereby mango sellers must laboriously identify mangoes by hand. This is time-consuming and tedious. In this work, TensorFlow Lite was used as a transfer learning tool. Transfer learning is a fast approach in resolving classification problems effectively using small datasets. This work involves six categories, where four mango types are classified (Harum Manis, Langra, Dasheri and Sindhri), categories for other types of mangoes, and a non-mango category. Each category dataset comprises 100 images, and is split 70/30 between the training and testing set, respectively. This work was undertaken with a mobile-based application that can be used to distinguish various types of mangoes based on the proposed transfer learning method. The results obtained from the conducted experiment show that adopted transfer learning can achieve an accuracy of 95% for mango recognition. A preliminary user acceptance survey was also carried out to investigate the user’s requirements, the effectiveness of the proposed functionalities, and the ease of use of its proposed interfaces, with promising results.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139208885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-30DOI: 10.26555/ijain.v9i3.1431
Lalasa Mukku, Jyothi Thomas
Cervical cancer ranks as the fourth most prevalent malignancy among women globally. Timely identification and intervention in cases of cervical cancer hold the potential for achieving complete remission and cure. In this study, we built a deep learning model based on self-attention mechanism using transformer architecture to classify the cervix images to help in diagnosis of cervical cancer. We have used techniques like an enhanced multivariate gaussian mixture model optimized with mexican axolotl algorithm for segmenting the colposcope images prior to the Temporal Lesion Convolution Neural Network (TelsNet) classifying the images. TelsNet is a transformer-based neural network that uses temporal convolutional neural networks to identify cancerous regions in colposcope images. Our experiments show that TelsNet achieved an accuracy of 92.7%, with a sensitivity of 73.4% and a specificity of 82.1%. We compared the performance of our model with various state-of-the-art methods, and our results demonstrate that TelsNet outperformed the other methods. The findings have the potential to significantly simplify the process of detecting and accurately classifying cervical cancers at an early stage, leading to improved rates of remission and better overall outcomes for patients globally.
{"title":"TelsNet: temporal lesion network embedding in a transformer model to detect cervical cancer through colposcope images","authors":"Lalasa Mukku, Jyothi Thomas","doi":"10.26555/ijain.v9i3.1431","DOIUrl":"https://doi.org/10.26555/ijain.v9i3.1431","url":null,"abstract":"Cervical cancer ranks as the fourth most prevalent malignancy among women globally. Timely identification and intervention in cases of cervical cancer hold the potential for achieving complete remission and cure. In this study, we built a deep learning model based on self-attention mechanism using transformer architecture to classify the cervix images to help in diagnosis of cervical cancer. We have used techniques like an enhanced multivariate gaussian mixture model optimized with mexican axolotl algorithm for segmenting the colposcope images prior to the Temporal Lesion Convolution Neural Network (TelsNet) classifying the images. TelsNet is a transformer-based neural network that uses temporal convolutional neural networks to identify cancerous regions in colposcope images. Our experiments show that TelsNet achieved an accuracy of 92.7%, with a sensitivity of 73.4% and a specificity of 82.1%. We compared the performance of our model with various state-of-the-art methods, and our results demonstrate that TelsNet outperformed the other methods. The findings have the potential to significantly simplify the process of detecting and accurately classifying cervical cancers at an early stage, leading to improved rates of remission and better overall outcomes for patients globally.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"449 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139204301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kurnianingsih Kurnianingsih, A. Wirasatriya, Lutfan Lazuardi, Adi Wibowo, I. K. A. Enriko, W. Chin, Naoyuki Kubota
Accurate and reliable relative humidity forecasting is important when evaluating the impacts of climate change on humans and ecosystems. However, the complex interactions among geophysical parameters are challenging and may result in inaccurate weather forecasting. This study combines long short-term memory (LSTM) and extreme learning machines (ELM) to create a hybrid model-based forecasting technique to predict relative humidity to improve the accuracy of forecasts. Detailed experiments with univariate and multivariate problems were conducted, and the results show that LSTM-ELM and ELM-LSTM have the lowest MAE and RMSE results compared to stand-alone LSTM and ELM for the univariate problem. In addition, LSTM-ELM and ELM-LSTM result in lower computation time than stand-alone LSTM. The experiment results demonstrate that the proposed hybrid models outperform the comparative methods in relative humidity forecasting. We employed the recursive feature elimination (RFE) method and showed that dewpoint temperature, temperature, and wind speed are the factors that most affect relative humidity. A higher dewpoint temperature indicates more air moisture, equating to high relative humidity. Humidity levels also rise as the temperature rises.
在评估气候变化对人类和生态系统的影响时,准确可靠的相对湿度预报非常重要。然而,地球物理参数之间复杂的相互作用具有挑战性,可能导致天气预报不准确。本研究结合了长短期记忆(LSTM)和极端学习机(ELM),创建了一种基于混合模型的预测相对湿度的技术,以提高预测的准确性。对单变量和多变量问题进行了详细实验,结果表明,在单变量问题上,与独立的 LSTM 和 ELM 相比,LSTM-ELM 和 ELM-LSTM 的 MAE 和 RMSE 最低。此外,与独立的 LSTM 相比,LSTM-ELM 和 ELM-LSTM 的计算时间更短。实验结果表明,在相对湿度预测方面,所提出的混合模型优于其他方法。我们采用了递归特征消除(RFE)方法,结果表明露点温度、气温和风速是对相对湿度影响最大的因素。露点温度越高,表明空气湿度越大,相当于相对湿度越高。湿度水平也随着温度的升高而升高。
{"title":"Big data analytics for relative humidity time series forecasting based on the LSTM network and ELM","authors":"Kurnianingsih Kurnianingsih, A. Wirasatriya, Lutfan Lazuardi, Adi Wibowo, I. K. A. Enriko, W. Chin, Naoyuki Kubota","doi":"10.26555/ijain.v9i3.905","DOIUrl":"https://doi.org/10.26555/ijain.v9i3.905","url":null,"abstract":"Accurate and reliable relative humidity forecasting is important when evaluating the impacts of climate change on humans and ecosystems. However, the complex interactions among geophysical parameters are challenging and may result in inaccurate weather forecasting. This study combines long short-term memory (LSTM) and extreme learning machines (ELM) to create a hybrid model-based forecasting technique to predict relative humidity to improve the accuracy of forecasts. Detailed experiments with univariate and multivariate problems were conducted, and the results show that LSTM-ELM and ELM-LSTM have the lowest MAE and RMSE results compared to stand-alone LSTM and ELM for the univariate problem. In addition, LSTM-ELM and ELM-LSTM result in lower computation time than stand-alone LSTM. The experiment results demonstrate that the proposed hybrid models outperform the comparative methods in relative humidity forecasting. We employed the recursive feature elimination (RFE) method and showed that dewpoint temperature, temperature, and wind speed are the factors that most affect relative humidity. A higher dewpoint temperature indicates more air moisture, equating to high relative humidity. Humidity levels also rise as the temperature rises.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139205047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-01DOI: 10.26555/ijain.v9i3.1367
Nurzulaikha Khalid, Shuzlina Abdul-Rahman, Wahyu Wibowo, Nur Atiqah Sia Abdullah, Sofianita Mutalib
In Malaysia, during the early stages of the COVID-19 pandemic, the negative impact on mental health became noticeable. The public's psychological and behavioral responses have risen as the COVID-19 outbreak progresses. A high impression of severity, vulnerability, impact, and fear was the element that influenced higher anxiety. Social media data can be used to track Malaysian sentiments in the COVID-19 era. However, it is often found on the internet in text format with no labels, and manually decoding this data is usually complicated. Furthermore, traditional data-gathering approaches, such as filling out a survey form, may not completely capture the sentiments. This study uses a text mining technique called Latent Dirichlet Allocation (LDA) on social media to discover mental health topics during the COVID-19 pandemic. Then, a model is developed using a hybrid approach, combining both lexicon-based and Naïve Bayes classifier. The accuracy, precision, recall, and F-measures are used to evaluate the sentiment classification. The result shows that the best lexicon-based technique is VADER with 72% accuracy compared to TextBlob with 70% accuracy. These sentiments results allow for a better understanding and handling of the pandemic. The top three topics are identified and further classified into positive and negative comments. In conclusion, the developed model can assist healthcare workers and policymakers in making the right decisions in the upcoming pandemic outbreaks.
{"title":"Leveraging social media data using latent dirichlet allocation and naïve bayes for mental health sentiment analytics on Covid-19 pandemic","authors":"Nurzulaikha Khalid, Shuzlina Abdul-Rahman, Wahyu Wibowo, Nur Atiqah Sia Abdullah, Sofianita Mutalib","doi":"10.26555/ijain.v9i3.1367","DOIUrl":"https://doi.org/10.26555/ijain.v9i3.1367","url":null,"abstract":"In Malaysia, during the early stages of the COVID-19 pandemic, the negative impact on mental health became noticeable. The public's psychological and behavioral responses have risen as the COVID-19 outbreak progresses. A high impression of severity, vulnerability, impact, and fear was the element that influenced higher anxiety. Social media data can be used to track Malaysian sentiments in the COVID-19 era. However, it is often found on the internet in text format with no labels, and manually decoding this data is usually complicated. Furthermore, traditional data-gathering approaches, such as filling out a survey form, may not completely capture the sentiments. This study uses a text mining technique called Latent Dirichlet Allocation (LDA) on social media to discover mental health topics during the COVID-19 pandemic. Then, a model is developed using a hybrid approach, combining both lexicon-based and Naïve Bayes classifier. The accuracy, precision, recall, and F-measures are used to evaluate the sentiment classification. The result shows that the best lexicon-based technique is VADER with 72% accuracy compared to TextBlob with 70% accuracy. These sentiments results allow for a better understanding and handling of the pandemic. The top three topics are identified and further classified into positive and negative comments. In conclusion, the developed model can assist healthcare workers and policymakers in making the right decisions in the upcoming pandemic outbreaks.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"127 ","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136102580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}