Daniel Murungi Kironde Kibirige, Shaeden Gokool, Zama Nosihle Mkhize
{"title":"Estimation of soil moisture using environmental covariates and machine learning algorithms in Cathedral Peak Catchment, South Africa","authors":"Daniel Murungi Kironde Kibirige, Shaeden Gokool, Zama Nosihle Mkhize","doi":"10.1002/vzj2.20289","DOIUrl":null,"url":null,"abstract":"Abstract Soil moisture (SM) is a fundamental constituent of the terrestrial environment and the hydrological cycle. Owing to its significant influence on catchment hydrological responses, it can be utilized as an indicator of floods and droughts to aid early warning systems. This study aimed to develop a field‐scale method to estimate SM using parametric and machine learning‐based methods to compare whether advanced artificial intelligence methods can give similar results as traditional methods. Considering this, monthly observed SM data (from the top 10 cm), environmental covariates, and remotely sensed data from March 2019 to July 2021 for the Cathedral Peak Research Catchments VI and IX in South Africa were obtained. From the 241 observations obtained across 12 sites, 160 (∼66%) were used for model training, while the remaining 81 (∼34%) were used for model testing. Employing 10‐fold cross‐validation, the individual machine learning models (viz., support vector machine [SVM], random forest (RF), k‐nearest neighbor, classification and regression trees [Rpart], and generalized linear model) displayed a satisfactory performance ( R 2 = 0.52–0.79; root mean square error = 3.79–5.80). In the validation phase, the RF model displayed a superior performance, followed by the SVM. Subsequent SM estimation using the hybrid model produced satisfactory results in training ( R 2 = 0.90) and testing ( R 2 = 0.45). The results obtained from this study can aid in predicting SM variations in catchments with limited monitoring. Furthermore, this model can be applied in drought monitoring, forecasting, and informing agricultural management practices.","PeriodicalId":23594,"journal":{"name":"Vadose Zone Journal","volume":"60 3","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vadose Zone Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/vzj2.20289","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Soil moisture (SM) is a fundamental constituent of the terrestrial environment and the hydrological cycle. Owing to its significant influence on catchment hydrological responses, it can be utilized as an indicator of floods and droughts to aid early warning systems. This study aimed to develop a field‐scale method to estimate SM using parametric and machine learning‐based methods to compare whether advanced artificial intelligence methods can give similar results as traditional methods. Considering this, monthly observed SM data (from the top 10 cm), environmental covariates, and remotely sensed data from March 2019 to July 2021 for the Cathedral Peak Research Catchments VI and IX in South Africa were obtained. From the 241 observations obtained across 12 sites, 160 (∼66%) were used for model training, while the remaining 81 (∼34%) were used for model testing. Employing 10‐fold cross‐validation, the individual machine learning models (viz., support vector machine [SVM], random forest (RF), k‐nearest neighbor, classification and regression trees [Rpart], and generalized linear model) displayed a satisfactory performance ( R 2 = 0.52–0.79; root mean square error = 3.79–5.80). In the validation phase, the RF model displayed a superior performance, followed by the SVM. Subsequent SM estimation using the hybrid model produced satisfactory results in training ( R 2 = 0.90) and testing ( R 2 = 0.45). The results obtained from this study can aid in predicting SM variations in catchments with limited monitoring. Furthermore, this model can be applied in drought monitoring, forecasting, and informing agricultural management practices.
期刊介绍:
Vadose Zone Journal is a unique publication outlet for interdisciplinary research and assessment of the vadose zone, the portion of the Critical Zone that comprises the Earth’s critical living surface down to groundwater. It is a peer-reviewed, international journal publishing reviews, original research, and special sections across a wide range of disciplines. Vadose Zone Journal reports fundamental and applied research from disciplinary and multidisciplinary investigations, including assessment and policy analyses, of the mostly unsaturated zone between the soil surface and the groundwater table. The goal is to disseminate information to facilitate science-based decision-making and sustainable management of the vadose zone. Examples of topic areas suitable for VZJ are variably saturated fluid flow, heat and solute transport in granular and fractured media, flow processes in the capillary fringe at or near the water table, water table management, regional and global climate change impacts on the vadose zone, carbon sequestration, design and performance of waste disposal facilities, long-term stewardship of contaminated sites in the vadose zone, biogeochemical transformation processes, microbial processes in shallow and deep formations, bioremediation, and the fate and transport of radionuclides, inorganic and organic chemicals, colloids, viruses, and microorganisms. Articles in VZJ also address yet-to-be-resolved issues, such as how to quantify heterogeneity of subsurface processes and properties, and how to couple physical, chemical, and biological processes across a range of spatial scales from the molecular to the global.