M C Bezuidenhout, C J Clark, R P Breton, B W Stappers, E D Barr, M Caleb, W Chen, F Jankowski, M Kramer, K Rajwade, M Surnis
{"title":"Tied-array beam localization of radio transients and pulsars","authors":"M C Bezuidenhout, C J Clark, R P Breton, B W Stappers, E D Barr, M Caleb, W Chen, F Jankowski, M Kramer, K Rajwade, M Surnis","doi":"10.1093/rasti/rzad007","DOIUrl":null,"url":null,"abstract":"Abstract Multi-element interferometers such as MeerKAT, which observe with high time resolution and have a wide field of view, provide an ideal opportunity to perform real-time, untargeted transient and pulsar searches. However, because of data storage limitations, it is not always feasible to store the baseband data required to image the field of a discovered transient or pulsar. This limits the ability of surveys to effectively localize their discoveries and may restrict opportunities for follow-up science, especially of one-off events like some fast radio bursts. Here, we present a novel maximum-likelihood estimation approach to localizing transients and pulsars detected in multiple MeerKAT tied-array beams at once, which we call tied-array beam localization, as well as a Python implementation of the method named SeeKAT. We provide real-world examples of SeeKAT’s use as well as a Monte Carlo analysis to show that it is capable of localizing single pulses detected in beamformed MeerKAT data to (sub)arcsec precision.","PeriodicalId":500957,"journal":{"name":"RAS Techniques and Instruments","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAS Techniques and Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/rasti/rzad007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Multi-element interferometers such as MeerKAT, which observe with high time resolution and have a wide field of view, provide an ideal opportunity to perform real-time, untargeted transient and pulsar searches. However, because of data storage limitations, it is not always feasible to store the baseband data required to image the field of a discovered transient or pulsar. This limits the ability of surveys to effectively localize their discoveries and may restrict opportunities for follow-up science, especially of one-off events like some fast radio bursts. Here, we present a novel maximum-likelihood estimation approach to localizing transients and pulsars detected in multiple MeerKAT tied-array beams at once, which we call tied-array beam localization, as well as a Python implementation of the method named SeeKAT. We provide real-world examples of SeeKAT’s use as well as a Monte Carlo analysis to show that it is capable of localizing single pulses detected in beamformed MeerKAT data to (sub)arcsec precision.