{"title":"A novel magnetorheological finishing process based on three revolving flat tip tools for external cylindrical surfaces","authors":"Gagandeep Singh, Arvind Jayant","doi":"10.1504/ijsurfse.2023.128876","DOIUrl":null,"url":null,"abstract":"The magnetorheological finishing technique based on a stationary curved tip tool is found less effective in finishing external cylindrical surfaces. Therefore, three revolving flat tip tools-based magnetorheological finishing process which utilises the rotation of both workpiece and tools have been developed to address the issues of the existing method. Also, a feed mechanism has been built to provide the longitudinal movement to the workpiece. A workpiece of mild steel has been finished by both developed and existing methods. It has been observed that after finishing 1 hour 30 minutes with a stationary curved tip tool, surface roughness values Ra, Rq, and Rz decrease by 69.29%, 64.41%, and 61.26%, respectively. Whereas, the reduction in the surface roughness value of Ra, Rq, and Rz by 85.38%, 84.51%, and 82.7%, respectively, have been noted after finishing with the three revolving flat tip tools process at the same parameters and conditions.","PeriodicalId":14460,"journal":{"name":"International Journal of Surface Science and Engineering","volume":"176 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijsurfse.2023.128876","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2
Abstract
The magnetorheological finishing technique based on a stationary curved tip tool is found less effective in finishing external cylindrical surfaces. Therefore, three revolving flat tip tools-based magnetorheological finishing process which utilises the rotation of both workpiece and tools have been developed to address the issues of the existing method. Also, a feed mechanism has been built to provide the longitudinal movement to the workpiece. A workpiece of mild steel has been finished by both developed and existing methods. It has been observed that after finishing 1 hour 30 minutes with a stationary curved tip tool, surface roughness values Ra, Rq, and Rz decrease by 69.29%, 64.41%, and 61.26%, respectively. Whereas, the reduction in the surface roughness value of Ra, Rq, and Rz by 85.38%, 84.51%, and 82.7%, respectively, have been noted after finishing with the three revolving flat tip tools process at the same parameters and conditions.
期刊介绍:
IJSurfSE publishes refereed quality papers in the broad field of surface science and engineering including tribology, but with a special emphasis on the research and development in friction, wear, coatings and surface modification processes such as surface treatment, cladding, machining, polishing and grinding, across multiple scales from nanoscopic to macroscopic dimensions. High-integrity and high-performance surfaces of components have become a central research area in the professional community whose aim is to develop highly reliable ultra-precision devices.