Subsurface imaging dataset acquired at the Garner Valley Downhole Array site using a dense network of three-component nodal stations

IF 3.1 2区 工程技术 Q2 ENGINEERING, CIVIL Earthquake Spectra Pub Date : 2023-11-10 DOI:10.1177/87552930231209734
Joseph P Vantassel, Jodie A Crocker, Brady R Cox, Khiem Tran
{"title":"Subsurface imaging dataset acquired at the Garner Valley Downhole Array site using a dense network of three-component nodal stations","authors":"Joseph P Vantassel, Jodie A Crocker, Brady R Cox, Khiem Tran","doi":"10.1177/87552930231209734","DOIUrl":null,"url":null,"abstract":"There is a growing need to characterize the engineering material properties of the shallow subsurface in three dimensions for advanced engineering analyses. However, imaging the near-surface in three dimensions at spatial resolutions required for such purposes remains in its infancy and requires further study before it can be adopted into practice. To enable and accelerate research in this area, we present a large subsurface imaging data set acquired using a dense network of three-component (3C) nodal stations acquired in 2019 at the Garner Valley Downhole Array (GVDA) site. Acquisition of this data set involved the deployment of 196 stations positioned on a 14 × 14 grid with a 5 m spacing. The array was used to acquire active-source data generated by a vibroseis truck and an instrumented sledgehammer, and passive-wavefield data containing ambient noise. The active-source acquisition included 66 vibroseis and 209 instrumented sledgehammer source locations. Multiple source impacts were recorded at each source location to enable stacking of the recorded signals. The active-source recordings are provided in terms of both raw, uncorrected units of counts and corrected engineering units of meters per second. For each source impact, the force output from the vibroseis or instrumented sledgehammer was recorded and is provided in both raw counts and engineering units of kilonewtons. The passive-wavefield data include 28 h of ambient noise recorded over two nighttime deployments. The data set is shown to be useful for active-source and passive-wavefield three-dimensional imaging and other subsurface characterization techniques, which include horizontal-to-vertical spectral ratios (HVSRs), multichannel analysis of surface waves (MASW), and microtremor array measurements (MAM).","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":"101 44","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Spectra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/87552930231209734","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

Abstract

There is a growing need to characterize the engineering material properties of the shallow subsurface in three dimensions for advanced engineering analyses. However, imaging the near-surface in three dimensions at spatial resolutions required for such purposes remains in its infancy and requires further study before it can be adopted into practice. To enable and accelerate research in this area, we present a large subsurface imaging data set acquired using a dense network of three-component (3C) nodal stations acquired in 2019 at the Garner Valley Downhole Array (GVDA) site. Acquisition of this data set involved the deployment of 196 stations positioned on a 14 × 14 grid with a 5 m spacing. The array was used to acquire active-source data generated by a vibroseis truck and an instrumented sledgehammer, and passive-wavefield data containing ambient noise. The active-source acquisition included 66 vibroseis and 209 instrumented sledgehammer source locations. Multiple source impacts were recorded at each source location to enable stacking of the recorded signals. The active-source recordings are provided in terms of both raw, uncorrected units of counts and corrected engineering units of meters per second. For each source impact, the force output from the vibroseis or instrumented sledgehammer was recorded and is provided in both raw counts and engineering units of kilonewtons. The passive-wavefield data include 28 h of ambient noise recorded over two nighttime deployments. The data set is shown to be useful for active-source and passive-wavefield three-dimensional imaging and other subsurface characterization techniques, which include horizontal-to-vertical spectral ratios (HVSRs), multichannel analysis of surface waves (MASW), and microtremor array measurements (MAM).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用密集的三分量节点站网络,在加纳谷井下阵列站点获取地下成像数据集
为了进行先进的工程分析,越来越需要对浅层地下的工程材料特性进行三维表征。然而,以这种目的所需的空间分辨率对近地表进行三维成像仍然处于起步阶段,需要进一步研究才能付诸实践。为了促进和加速这一领域的研究,我们展示了2019年在加纳谷井下阵列(GVDA)站点使用三分量(3C)节点站密集网络获得的大型地下成像数据集。该数据集的获取涉及部署在14 × 14网格上的196个站点,间距为5米。该阵列用于获取由可控震源卡车和仪器大锤产生的有源数据,以及包含环境噪声的无源波场数据。主动震源采集包括66个可控震源和209个仪器大锤震源位置。在每个震源位置记录多个震源撞击,以便将记录的信号叠加。活动源记录以原始的、未校正的计数单位和校正的工程单位米/秒提供。对于每个源冲击,震源仪或仪器大锤输出的力都被记录下来,并以原始计数和千牛顿的工程单位提供。无源波场数据包括在两次夜间部署中记录的28小时的环境噪声。该数据集可用于有源和无源波场三维成像和其他地下表征技术,包括水平与垂直频谱比(HVSRs)、多通道表面波分析(MASW)和微震动阵列测量(MAM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Earthquake Spectra
Earthquake Spectra 工程技术-工程:地质
CiteScore
8.40
自引率
12.00%
发文量
88
审稿时长
6-12 weeks
期刊介绍: Earthquake Spectra, the professional peer-reviewed journal of the Earthquake Engineering Research Institute (EERI), serves as the publication of record for the development of earthquake engineering practice, earthquake codes and regulations, earthquake public policy, and earthquake investigation reports. The journal is published quarterly in both printed and online editions in February, May, August, and November, with additional special edition issues. EERI established Earthquake Spectra with the purpose of improving the practice of earthquake hazards mitigation, preparedness, and recovery — serving the informational needs of the diverse professionals engaged in earthquake risk reduction: civil, geotechnical, mechanical, and structural engineers; geologists, seismologists, and other earth scientists; architects and city planners; public officials; social scientists; and researchers.
期刊最新文献
Deep-neural-network model for predicting ground motion parameters using earthquake horizontal-to-vertical spectral ratios Ground-motions site and event specificity: Insights from assessing a suite of simulated ground motions in the San Francisco Bay Area Analysis of site-response residuals from empirical ground-motion models to account for observed sedimentary basin effects in Wellington, New Zealand Modeling hospital resources based on global epidemiology after earthquake-related disasters Front Matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1