首页 > 最新文献

Earthquake Spectra最新文献

英文 中文
Front Matter 前言
IF 5 2区 工程技术 Q2 ENGINEERING, CIVIL Pub Date : 2024-08-10 DOI: 10.1177/87552930241277356
{"title":"Front Matter","authors":"","doi":"10.1177/87552930241277356","DOIUrl":"https://doi.org/10.1177/87552930241277356","url":null,"abstract":"","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 2023 Alaska National Seismic Hazard Model 2023 年阿拉斯加国家地震灾害模型
IF 5 2区 工程技术 Q2 ENGINEERING, CIVIL Pub Date : 2024-08-08 DOI: 10.1177/87552930241266741
Peter M Powers, Jason M Altekruse, Andrea L Llenos, Andy J Michael, Kirstie L Haynie, Peter J Haeussler, Adrian M Bender, Sanaz Rezaeian, Morgan P Moschetti, James A Smith, Richard W Briggs, Robert C Witter, Charles S Mueller, Yuehua Zeng, Demi L Girot, Julie A Herrick, Allison M Shumway, Mark D Petersen
US Geological Survey (USGS) National Seismic Hazard Models (NSHMs) are used extensively for seismic design regulations in the United States and earthquake scenario development, as well as risk assessment and mitigation for both buildings and infrastructure. This 2023 update of the long-term, time-independent Alaska NSHM includes substantial changes to both the earthquake rupture forecast (ERF) and ground motion models (GMMs). The ERF includes numerous additions to the finite-fault model, considers two deformation models, and introduces updated declustering and smoothing algorithms in the gridded background seismicity model. For the Alaska–Aleutian subduction zone, megathrust earthquakes occur on an updated structural and segmentation model, and the moment magnitude (M) 8+ rupture and rate model include a logic tree branch that considers slip rates derived from geodetic models of interface coupling. The megathrust model considers multiple models of down-dip width, and magnitudes are computed using newly developed scaling relations. For subduction intraslab events and subduction interface events with M < 7, the 2023 update uses a smoothed seismicity model with rupture depths derived from Slab2. The 2023 model updates GMMs in all tectonic settings using the recently published Next Generation Attenuation Subduction (NGA-Sub) GMMs for subduction interface and intraslab events, and the NGA-West2 GMMs for active crustal settings. Collectively, additions and updates to the Alaska NSHM result in hazard increases across most of south-central Alaska relative to the previous model, published in 2007. These changes are primarily due to the adoption of updated rate models for the large-magnitude interface events and the NGA-Sub GMMs that have much higher aleatory variability (sigma), consistent with global observations, and that include models of epistemic uncertainty.
美国地质调查局(USGS)的国家地震危险模型(NSHM)被广泛用于美国的地震设计法规和地震场景开发,以及建筑物和基础设施的风险评估和减灾。与时间无关的长期阿拉斯加国家地震危险性模型的 2023 年更新包括对地震破裂预测 (ERF) 和地面运动模型 (GMM) 的重大更改。地震破裂预测(ERF)包括对有限断层模型的大量补充,考虑了两种变形模型,并在网格背景地震模型中引入了更新的去聚类和平滑算法。对于阿拉斯加-阿留申俯冲带,巨推地震发生在更新的结构和分段模型中,矩震级 (M) 8+ 破裂和速率模型包括一个逻辑树分支,该分支考虑了从界面耦合大地测量模型中得出的滑动速率。巨推模型考虑了多种下倾宽度模型,并使用新开发的比例关系计算震级。对于 M < 7 的俯冲板内事件和俯冲界面事件,2023 年更新版使用了平滑地震模型,其破裂深度来自 Slab2。2023 年模式更新了所有构造背景下的 GMMs,针对俯冲界面和台内事件使用了最近发布的下一代衰减俯冲(NGA-Sub)GMMs,针对活动地壳背景使用了 NGA-West2 GMMs。总体而言,与 2007 年发布的前一模型相比,阿拉斯加 NSHM 的增加和更新导致阿拉斯加中南部大部分地区的灾害增加。这些变化主要是由于采用了更新的大震级界面事件速率模型和 NGA-Sub GMMs,这些模型具有与全球观测结果一致的更高的 aleatory variability (sigma),并包含了认识不确定性模型。
{"title":"The 2023 Alaska National Seismic Hazard Model","authors":"Peter M Powers, Jason M Altekruse, Andrea L Llenos, Andy J Michael, Kirstie L Haynie, Peter J Haeussler, Adrian M Bender, Sanaz Rezaeian, Morgan P Moschetti, James A Smith, Richard W Briggs, Robert C Witter, Charles S Mueller, Yuehua Zeng, Demi L Girot, Julie A Herrick, Allison M Shumway, Mark D Petersen","doi":"10.1177/87552930241266741","DOIUrl":"https://doi.org/10.1177/87552930241266741","url":null,"abstract":"US Geological Survey (USGS) National Seismic Hazard Models (NSHMs) are used extensively for seismic design regulations in the United States and earthquake scenario development, as well as risk assessment and mitigation for both buildings and infrastructure. This 2023 update of the long-term, time-independent Alaska NSHM includes substantial changes to both the earthquake rupture forecast (ERF) and ground motion models (GMMs). The ERF includes numerous additions to the finite-fault model, considers two deformation models, and introduces updated declustering and smoothing algorithms in the gridded background seismicity model. For the Alaska–Aleutian subduction zone, megathrust earthquakes occur on an updated structural and segmentation model, and the moment magnitude (M) 8+ rupture and rate model include a logic tree branch that considers slip rates derived from geodetic models of interface coupling. The megathrust model considers multiple models of down-dip width, and magnitudes are computed using newly developed scaling relations. For subduction intraslab events and subduction interface events with M &lt; 7, the 2023 update uses a smoothed seismicity model with rupture depths derived from Slab2. The 2023 model updates GMMs in all tectonic settings using the recently published Next Generation Attenuation Subduction (NGA-Sub) GMMs for subduction interface and intraslab events, and the NGA-West2 GMMs for active crustal settings. Collectively, additions and updates to the Alaska NSHM result in hazard increases across most of south-central Alaska relative to the previous model, published in 2007. These changes are primarily due to the adoption of updated rate models for the large-magnitude interface events and the NGA-Sub GMMs that have much higher aleatory variability (sigma), consistent with global observations, and that include models of epistemic uncertainty.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vulnerability of suspension bridges to spatially variable vertical ground motions 悬索桥对空间可变垂直地动的脆弱性
IF 5 2区 工程技术 Q2 ENGINEERING, CIVIL Pub Date : 2024-08-07 DOI: 10.1177/87552930241262775
Arsam Taslimi, Floriana Petrone
This study investigates the vulnerability of long-span suspension bridges to spatially variable vertical ground motions (SV-VGMs). While of recognized importance, a comprehensive understanding of this topic has been traditionally limited by the unavailability of an adequate number of arrays of motions. In this work, 10 simulations of a large-magnitude Hayward Fault earthquake are utilized to perform site-specific structural response assessments of a suspension bridge under different load scenarios. A detailed nonlinear model representative of the West San Francisco-Oakland Bay Bridge is employed as the case study structure. Four sets of nonlinear time-history analyses are performed with and without VGMs and with and without the incorporation of spatial variability to offer the basis for a complete comparison of the demand distributions across different load cases. Results indicate that VGMs largely influence the response of the bridge decks in the vertical direction, with an increase in drifts up to 2× for the case of synchronous input and up to 2.5× for the case of asynchronous inputs. The analysis of the bridge response in the time and frequency domain across all load cases reveals a high sensitivity of the decks’ response to minor time lags in input motions of comparable amplitude, which are seen to activate the contribution of higher modes to the structural response. Evidence from this study points to the potential of severely underestimating structural demands if the (even limited) spatial variability of the input motions is not incorporated correctly. For the case study structure, the probability of exceeding the onset of nonlinearity in the short decks at the design earthquake level is seen to increase by a factor of about two when considering SV-VGMs as opposed to synchronous horizontal motions only.
本研究探讨了大跨度悬索桥在空间可变垂直地震动(SV-VGMs)面前的脆弱性。尽管其重要性已得到公认,但对这一课题的全面了解一直受到无法获得足够数量的地震运动阵列的限制。在这项研究中,利用 10 次大震级海沃德断层地震的模拟,对一座悬索桥在不同荷载情况下的特定场地结构响应进行了评估。案例研究结构采用了代表西旧金山-奥克兰海湾大桥的详细非线性模型。在有无 VGM 以及有无空间变化的情况下,进行了四组非线性时程分析,为全面比较不同荷载情况下的需求分布提供了基础。结果表明,VGM 在很大程度上影响了桥面在垂直方向上的响应,在同步输入的情况下,漂移增加达 2 倍,在异步输入的情况下,漂移增加达 2.5 倍。对所有荷载情况下桥梁响应的时域和频域分析表明,桥面响应对振幅相当的输入运动的微小时滞具有高度敏感性,这些时滞可激活较高模态对结构响应的贡献。这项研究的证据表明,如果不正确考虑输入运动的空间变化(即使是有限的),就有可能严重低估结构需求。对于案例研究的结构而言,如果只考虑同步水平运动,而不考虑 SV-VGMs ,那么在设计地震级别下,短层结构中超过非线性起始点的概率将增加约 2 倍。
{"title":"Vulnerability of suspension bridges to spatially variable vertical ground motions","authors":"Arsam Taslimi, Floriana Petrone","doi":"10.1177/87552930241262775","DOIUrl":"https://doi.org/10.1177/87552930241262775","url":null,"abstract":"This study investigates the vulnerability of long-span suspension bridges to spatially variable vertical ground motions (SV-VGMs). While of recognized importance, a comprehensive understanding of this topic has been traditionally limited by the unavailability of an adequate number of arrays of motions. In this work, 10 simulations of a large-magnitude Hayward Fault earthquake are utilized to perform site-specific structural response assessments of a suspension bridge under different load scenarios. A detailed nonlinear model representative of the West San Francisco-Oakland Bay Bridge is employed as the case study structure. Four sets of nonlinear time-history analyses are performed with and without VGMs and with and without the incorporation of spatial variability to offer the basis for a complete comparison of the demand distributions across different load cases. Results indicate that VGMs largely influence the response of the bridge decks in the vertical direction, with an increase in drifts up to 2× for the case of synchronous input and up to 2.5× for the case of asynchronous inputs. The analysis of the bridge response in the time and frequency domain across all load cases reveals a high sensitivity of the decks’ response to minor time lags in input motions of comparable amplitude, which are seen to activate the contribution of higher modes to the structural response. Evidence from this study points to the potential of severely underestimating structural demands if the (even limited) spatial variability of the input motions is not incorporated correctly. For the case study structure, the probability of exceeding the onset of nonlinearity in the short decks at the design earthquake level is seen to increase by a factor of about two when considering SV-VGMs as opposed to synchronous horizontal motions only.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probabilistic seismic hazard analysis for the Dominican Republic 多米尼加共和国地震灾害概率分析
IF 5 2区 工程技术 Q2 ENGINEERING, CIVIL Pub Date : 2024-08-07 DOI: 10.1177/87552930241263618
Kendra Johnson, Thomas Chartier, Marco Pagani, Yesica Perez, Vladimir Guzmán, Maria Betania Roque de Medina, Richard Styron, Catalina Yepes-Estrada
The Dominican Republic experiences moderate to high seismic hazard mostly caused by oblique convergence at the Caribbean/North American plate boundary that manifests as subduction zones, less-pronounced subduction-like trenches with thrust faulting, long strike-slip faults parallel to the plate boundary, and onshore deformation. Historical earthquakes have damaged the Dominican Republic’s large cities and those in neighboring Haiti, once requiring relocation. Given this, the Dominican Republic joined the “Training and Communication for Earthquake Risk Assessment” (TREQ) project funded by the United States Agency for International Development, which aimed to increase earthquake risk assessment capacity in Latin American cities. The TREQ project was the basis for developing an openly available probabilistic seismic hazard model for the Dominican Republic. The input model was developed from two main datasets: a homogenized earthquake catalog and an active faults database that combines results of recent local projects with a global database. The seismic source characterization used these to constrain source geometries and occurrence rates for active shallow crustal earthquakes, subduction interfaces and subduction-like thrusts, and intraslab earthquakes. Shallow crustal earthquakes, including those on subduction-like thrusts, are modeled by smoothed seismicity and fault sources, the latter using pre-defined geometries that permit multi-fault ruptures. Seismicity on the Puerto Rico Trench subduction interface is modeled as a fault source, while intraslab sources use pre-defined gridded ruptures inside the intraslab volume. The source characterization applies epistemic uncertainties to modeling assumptions affecting occurrence rates and maximum magnitudes. The ground motion characterization used residual analyses from past regional projects as a basis, updating some components with more recent ground motion models. Computed hazard results reinforce those from recent studies in terms of geographical hazard patterns and levels. For 475-year return periods, peak ground acceleration (PGA) in Santiago de los Caballeros reaches 0.50 g, controlled by the Septentrional Fault, while all tectonic region types contribute to the PGA 0.31 g computed for Santo Domingo.
多米尼加共和国的地震危害程度为中度到高度,主要是由于加勒比/北美板块边界的斜向辐合造成的,表现为俯冲带、不太明显的带有推力断层的类似俯冲的海沟、与板块边界平行的长走向滑动断层以及陆上变形。历史上的地震破坏了多米尼加共和国的大城市和邻国海地的城市,一度需要搬迁。有鉴于此,多米尼加共和国加入了由美国国际开发署资助的 "地震风险评估培训与交流"(TREQ)项目,该项目旨在提高拉丁美洲城市的地震风险评估能力。TREQ 项目是为多米尼加共和国开发公开可用的地震危险概率模型的基础。输入模型是在两个主要数据集的基础上开发的:一个同质化地震目录和一个活动断层数据库,后者结合了近期地方项目的成果和全球数据库。震源特征描述利用这些数据来确定震源几何形状和活动浅层地壳地震、俯冲界面和类俯冲推力以及岩床内地震的发生率。浅层地壳地震,包括类俯冲推力上的地震,是通过平滑地震和断层震源建模的,后者使用允许多断层破裂的预定义几何形状。波多黎各海沟俯冲界面上的地震被建模为断层源,而内部岩层源则使用内部岩层体积内预先定义的网格破裂。震源特征描述对影响发生率和最大震级的建模假设应用了认识上的不确定性。地动特征描述以过去区域项目的残余分析为基础,用最新的地动模型更新了某些部分。计算出的危害结果在地理危害模式和程度方面加强了近期研究的结果。在重现期为 475 年的情况下,圣地亚哥德洛斯卡瓦列罗斯的峰值地面加速度(PGA)达到 0.50 克,由 Septentrional 断层控制,而圣多明各的峰值地面加速度(PGA)为 0.31 克,是所有构造地区类型造成的。
{"title":"Probabilistic seismic hazard analysis for the Dominican Republic","authors":"Kendra Johnson, Thomas Chartier, Marco Pagani, Yesica Perez, Vladimir Guzmán, Maria Betania Roque de Medina, Richard Styron, Catalina Yepes-Estrada","doi":"10.1177/87552930241263618","DOIUrl":"https://doi.org/10.1177/87552930241263618","url":null,"abstract":"The Dominican Republic experiences moderate to high seismic hazard mostly caused by oblique convergence at the Caribbean/North American plate boundary that manifests as subduction zones, less-pronounced subduction-like trenches with thrust faulting, long strike-slip faults parallel to the plate boundary, and onshore deformation. Historical earthquakes have damaged the Dominican Republic’s large cities and those in neighboring Haiti, once requiring relocation. Given this, the Dominican Republic joined the “Training and Communication for Earthquake Risk Assessment” (TREQ) project funded by the United States Agency for International Development, which aimed to increase earthquake risk assessment capacity in Latin American cities. The TREQ project was the basis for developing an openly available probabilistic seismic hazard model for the Dominican Republic. The input model was developed from two main datasets: a homogenized earthquake catalog and an active faults database that combines results of recent local projects with a global database. The seismic source characterization used these to constrain source geometries and occurrence rates for active shallow crustal earthquakes, subduction interfaces and subduction-like thrusts, and intraslab earthquakes. Shallow crustal earthquakes, including those on subduction-like thrusts, are modeled by smoothed seismicity and fault sources, the latter using pre-defined geometries that permit multi-fault ruptures. Seismicity on the Puerto Rico Trench subduction interface is modeled as a fault source, while intraslab sources use pre-defined gridded ruptures inside the intraslab volume. The source characterization applies epistemic uncertainties to modeling assumptions affecting occurrence rates and maximum magnitudes. The ground motion characterization used residual analyses from past regional projects as a basis, updating some components with more recent ground motion models. Computed hazard results reinforce those from recent studies in terms of geographical hazard patterns and levels. For 475-year return periods, peak ground acceleration (PGA) in Santiago de los Caballeros reaches 0.50 g, controlled by the Septentrional Fault, while all tectonic region types contribute to the PGA 0.31 g computed for Santo Domingo.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141946237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frame buildings are not an answer for earthquakes: The case of the February 2023 earthquakes in Türkiye 框架结构建筑无法抵御地震:2023 年 2 月土耳其地震案例
IF 5 2区 工程技术 Q2 ENGINEERING, CIVIL Pub Date : 2024-07-31 DOI: 10.1177/87552930241262753
Egemen Sönmez, Mario E Rodriguez
The February 2023 earthquakes in Türkiye caused widespread devastation and fatalities, highlighting the critical contrast in the seismic performance of reinforced concrete (RC) buildings with moment-resistant frames and those with structural walls. This study employs analyses of nonlinear single-degree-of-freedom (SDOF) systems using selected accelerograms from the earthquakes to evaluate the behavior of these structural systems. Three SDOF systems representing flexible and stiffer frame buildings, alongside RC wall buildings, were examined. The results highlighted the susceptibility of frame buildings to severe damage and collapse compared with the excellent performance of RC wall buildings. Moreover, the study emphasizes a shift of design focus from life safety to functional recovery. It also identifies potential scenarios regarding consecutive earthquake effects. Overall, the findings advocate adequately designed RC wall buildings for enhanced seismic performance and immediate occupation following major earthquakes.
2023 年 2 月发生在土耳其的地震造成了广泛的破坏和人员伤亡,凸显了采用抗力矩框架的钢筋混凝土 (RC) 建筑与采用结构墙的建筑在抗震性能上的巨大反差。本研究利用地震中选取的加速度图,对非线性单自由度(SDOF)系统进行分析,以评估这些结构系统的行为。研究了三个 SDOF 系统,分别代表柔性和刚性框架建筑,以及 RC 墙体建筑。研究结果表明,与 RC 墙体建筑的优异性能相比,框架结构建筑更容易遭受严重破坏和倒塌。此外,研究还强调了设计重点应从生命安全转向功能恢复。研究还确定了地震连续影响的潜在情况。总之,研究结果提倡对 RC 墙体建筑进行充分设计,以提高抗震性能,并在大地震后立即投入使用。
{"title":"Frame buildings are not an answer for earthquakes: The case of the February 2023 earthquakes in Türkiye","authors":"Egemen Sönmez, Mario E Rodriguez","doi":"10.1177/87552930241262753","DOIUrl":"https://doi.org/10.1177/87552930241262753","url":null,"abstract":"The February 2023 earthquakes in Türkiye caused widespread devastation and fatalities, highlighting the critical contrast in the seismic performance of reinforced concrete (RC) buildings with moment-resistant frames and those with structural walls. This study employs analyses of nonlinear single-degree-of-freedom (SDOF) systems using selected accelerograms from the earthquakes to evaluate the behavior of these structural systems. Three SDOF systems representing flexible and stiffer frame buildings, alongside RC wall buildings, were examined. The results highlighted the susceptibility of frame buildings to severe damage and collapse compared with the excellent performance of RC wall buildings. Moreover, the study emphasizes a shift of design focus from life safety to functional recovery. It also identifies potential scenarios regarding consecutive earthquake effects. Overall, the findings advocate adequately designed RC wall buildings for enhanced seismic performance and immediate occupation following major earthquakes.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
“We ran outside and waited for it to come”: Resident experiences in response to a false earthquake early warning "我们跑到外面等着它来":居民应对虚假地震预警的经验
IF 5 2区 工程技术 Q2 ENGINEERING, CIVIL Pub Date : 2024-07-31 DOI: 10.1177/87552930241266742
Jeannette Sutton, Savanah Crouch, Nicholas Waugh, Michele M Wood
Ridgecrest, CA, experienced the Searles Valley earthquake sequence in 2019 and a “false” earthquake alert in 2020, providing a unique opportunity to examine the effects of earthquake experience on future responses to informational cues to action (i.e., earthquake alert), as well as reactions to a “false” alert. We conducted in-depth interviews with 41 residents using the protective action decision-making model as a theoretical framework. Interviewees reported a variety of environmental cues that signaled the onset of an earthquake, including sensing a foreshock, hearing the earth rumble, hearing objects fall to the floor and break, and observing unusual animal behavior. Fewer individuals received social cues to action. More individuals reported performing “drop, cover, and hold on,” and fewer reported standing in a doorway in response to the 2020 alert than had done so in the prior 2019 earthquake. Several respondents reported maintaining protective actions well after the “false” alert was issued, and many waited more than 5 min before determining there was no threat present. Prior experience of the 2019 earthquake series affected perceptions of the earthquake alert and what actions to take; however, there was limited knowledge of how the ShakeAlert system worked to monitor, detect, and model earthquakes via earthquake early warning to persons at risk. Findings indicate there is a need for additional public education about ShakeAlert-powered earthquake early warning, including how far in advance one can expect to receive an alert, as well as the protective actions one should take and when to take them.
加利福尼亚州里奇奎斯特市在 2019 年经历了 Searles Valley 地震序列,并在 2020 年经历了一次 "错误 "地震警报,这为我们提供了一个独特的机会来研究地震经历对未来行动信息提示(即地震警报)的影响,以及对 "错误 "警报的反应。我们以保护性行动决策模型为理论框架,对 41 位居民进行了深入访谈。受访者报告了各种预示地震来临的环境线索,包括感觉到前震、听到大地隆隆作响、听到物体掉在地上摔碎的声音以及观察到不寻常的动物行为。收到社会行动提示的人较少。与之前的 2019 年地震相比,更多的人表示在 2020 年的警报中采取了 "放下、躲避和坚持 "的行动,而站在门口的人则更少。一些受访者称,在 "错误 "警报发出后,他们仍坚持采取保护行动,许多人在等待 5 分钟以上后才确定没有威胁。之前在 2019 年系列地震中的经历影响了人们对地震警报和采取何种行动的看法;然而,人们对 ShakeAlert 系统如何通过地震预警对处于危险中的人员进行监测、检测和地震建模的了解十分有限。研究结果表明,有必要开展更多有关 ShakeAlert 地震预警的公众教育,包括人们可以提前多久收到警报,以及应该采取的保护措施和何时采取这些措施。
{"title":"“We ran outside and waited for it to come”: Resident experiences in response to a false earthquake early warning","authors":"Jeannette Sutton, Savanah Crouch, Nicholas Waugh, Michele M Wood","doi":"10.1177/87552930241266742","DOIUrl":"https://doi.org/10.1177/87552930241266742","url":null,"abstract":"Ridgecrest, CA, experienced the Searles Valley earthquake sequence in 2019 and a “false” earthquake alert in 2020, providing a unique opportunity to examine the effects of earthquake experience on future responses to informational cues to action (i.e., earthquake alert), as well as reactions to a “false” alert. We conducted in-depth interviews with 41 residents using the protective action decision-making model as a theoretical framework. Interviewees reported a variety of environmental cues that signaled the onset of an earthquake, including sensing a foreshock, hearing the earth rumble, hearing objects fall to the floor and break, and observing unusual animal behavior. Fewer individuals received social cues to action. More individuals reported performing “drop, cover, and hold on,” and fewer reported standing in a doorway in response to the 2020 alert than had done so in the prior 2019 earthquake. Several respondents reported maintaining protective actions well after the “false” alert was issued, and many waited more than 5 min before determining there was no threat present. Prior experience of the 2019 earthquake series affected perceptions of the earthquake alert and what actions to take; however, there was limited knowledge of how the ShakeAlert system worked to monitor, detect, and model earthquakes via earthquake early warning to persons at risk. Findings indicate there is a need for additional public education about ShakeAlert-powered earthquake early warning, including how far in advance one can expect to receive an alert, as well as the protective actions one should take and when to take them.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Database for the Fault Displacement Hazard Initiative Project 断层位移危害倡议项目数据库
IF 5 2区 工程技术 Q2 ENGINEERING, CIVIL Pub Date : 2024-07-30 DOI: 10.1177/87552930241262766
Alexandra Sarmiento, Danielle Madugo, Andi Shen, Timothy Dawson, Chris Madugo, Stephen Thompson, Yousef Bozorgnia, Stéphane Baize, Paolo Boncio, Albert Kottke, Grigorios Lavrentiadis, Silvia Mazzoni, Christopher Milliner, Fiia Nurminen, Francesco Visini
New predictive models for fault displacement and surface rupture hazard analysis developed through the Fault Displacement Hazard Initiative (FDHI) research program require a high-quality empirical database to apply advanced statistical methods and improve hazard estimates. This article discusses the development and contents of the FDHI Project database. We systematically collected, reviewed, and organized fault displacement measurements, surface rupture maps, and supporting information from the scientific literature. A framework was developed and implemented to classify principal and distributed faulting. Best-estimate net displacement amplitudes were calculated from slip component measurements and quality codes were assigned to all net displacement values. The database contains 75 historical, surface-rupturing crustal earthquakes ranging from M 4.9 to 8.0. Thirty-five earthquakes have a strike-slip faulting mechanism, while 25 and 15 events are reverse/reverse-oblique and normal/normal-oblique, respectively. Although most of the earthquakes are from Western North America, Japan, and other active tectonic regions, there are nine reverse faulting events from the stable continental region of Australia. The database contains over 40,000 individual fault displacement measurements for various slip components from roughly 28,000 observation sites. Geographic coordinates are included for all data, and event-specific coordinate systems are provided for each earthquake that transform data into an along-strike dimension. Our new database provides a standardized collection of surface rupture and fault displacement data and metadata that is the result of a comprehensive effort to create a reliable and stable product for the FDHI model development teams and the geoscience community.
通过断层位移危险性计划(FDHI)研究项目开发的新的断层位移和地表破裂危险性分析预测模型需要一个高质量的经验数据库,以便应用先进的统计方法和改进危险性估算。本文讨论了 FDHI 项目数据库的开发和内容。我们系统地收集、审查和整理了断层位移测量数据、地表破裂图以及科学文献中的辅助信息。我们开发并实施了一个框架,用于对主断层和分布式断层进行分类。根据滑动分量测量结果计算出最佳估计净位移振幅,并为所有净位移值分配质量代码。数据库包含 75 个历史上发生的地表破坏性地壳地震,震级从 4.9 到 8.0 级不等。其中 35 次地震具有走向滑动断层机制,25 次和 15 次地震分别为反向/反斜和正向/正斜。虽然大部分地震来自北美西部、日本和其他活跃的构造地区,但也有 9 个逆断层事件来自澳大利亚的稳定大陆地区。该数据库包含来自约 28,000 个观测点的 40,000 多个不同滑动成分的单个断层位移测量值。所有数据均包含地理坐标,并为每次地震提供了特定事件坐标系,将数据转换为沿走向维度。我们的新数据库提供了标准化的地表破裂和断层位移数据及元数据,是为 FDHI 模型开发团队和地球科学界创建可靠、稳定的产品所做的全面努力的成果。
{"title":"Database for the Fault Displacement Hazard Initiative Project","authors":"Alexandra Sarmiento, Danielle Madugo, Andi Shen, Timothy Dawson, Chris Madugo, Stephen Thompson, Yousef Bozorgnia, Stéphane Baize, Paolo Boncio, Albert Kottke, Grigorios Lavrentiadis, Silvia Mazzoni, Christopher Milliner, Fiia Nurminen, Francesco Visini","doi":"10.1177/87552930241262766","DOIUrl":"https://doi.org/10.1177/87552930241262766","url":null,"abstract":"New predictive models for fault displacement and surface rupture hazard analysis developed through the Fault Displacement Hazard Initiative (FDHI) research program require a high-quality empirical database to apply advanced statistical methods and improve hazard estimates. This article discusses the development and contents of the FDHI Project database. We systematically collected, reviewed, and organized fault displacement measurements, surface rupture maps, and supporting information from the scientific literature. A framework was developed and implemented to classify principal and distributed faulting. Best-estimate net displacement amplitudes were calculated from slip component measurements and quality codes were assigned to all net displacement values. The database contains 75 historical, surface-rupturing crustal earthquakes ranging from M 4.9 to 8.0. Thirty-five earthquakes have a strike-slip faulting mechanism, while 25 and 15 events are reverse/reverse-oblique and normal/normal-oblique, respectively. Although most of the earthquakes are from Western North America, Japan, and other active tectonic regions, there are nine reverse faulting events from the stable continental region of Australia. The database contains over 40,000 individual fault displacement measurements for various slip components from roughly 28,000 observation sites. Geographic coordinates are included for all data, and event-specific coordinate systems are provided for each earthquake that transform data into an along-strike dimension. Our new database provides a standardized collection of surface rupture and fault displacement data and metadata that is the result of a comprehensive effort to create a reliable and stable product for the FDHI model development teams and the geoscience community.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of probability model misspecification on the number of ground motions required for seismic performance assessment 概率模型错误规范对地震性能评估所需地面运动次数的影响
IF 5 2区 工程技术 Q2 ENGINEERING, CIVIL Pub Date : 2024-07-30 DOI: 10.1177/87552930241262044
Chenhao Wu, Henry V Burton
The number of ground motions used in nonlinear response history analysis (NRHA) determines the precision of the parameter estimates obtained in seismic performance assessments. While this issue has been extensively studied in the earthquake engineering literature, the relationship of probability model misspecification to parameter estimation uncertainty, and the implication to the required number of ground motions needed for NRHA, has not been examined. Probability model misspecification has the potential to increase estimation uncertainty and hence requires a greater number of ground motions to achieve the same precision compared to when misspecification is disregarded. This study develops a procedure to determine the required number of ground motions in seismic code-prescriptive and risk-based assessments with possible probability model misspecification. Specifically, we employ the quasi-maximum likelihood estimation (QMLE), which is robust to probability model misspecification, to evaluate estimation uncertainty. The QMLE approach is applied to an archetype California bridge under the two seismic assessment scenarios. In the code-prescriptive assessment, misspecification errors are identified for dispersion estimates of the bridge column ductility demand. In the most extreme case of the risk-based evaluation, misspecification increases the estimation uncertainty of the mean annual frequency of exceeding a limit state by as much as three times, which substantially increases the required number of ground motions. Based on the findings from this study, we advocate for the use of QMLE to detect and rectify the implications of model misspecification to estimation uncertainty and the number of ground motions used in probabilistic seismic performance assessments.
非线性响应历史分析(NRHA)中使用的地震动数量决定了地震性能评估中获得的参数估计的精度。虽然地震工程文献对这一问题进行了广泛的研究,但还没有研究过概率模型指定错误与参数估计不确定性之间的关系,以及对 NRHA 所需地震动次数的影响。概率模型的错误规范有可能增加估算的不确定性,因此与不考虑错误规范的情况相比,需要更多的地面运动才能达到相同的精度。本研究开发了一种程序,用于确定在可能存在概率模型错误规范的情况下,地震规范规定性评估和基于风险的评估所需的地面运动数量。具体来说,我们采用了对概率模型误判具有鲁棒性的准最大似然估计法(QMLE)来评估估计的不确定性。QMLE 方法适用于两种地震评估方案下的加州桥梁原型。在规范性评估中,发现了对桥柱延性需求的离散性估计的失准误差。在基于风险的评估中,最极端的情况是,错误指定使超过极限状态的年平均频率的估计不确定性增加了三倍之多,这大大增加了所需的地面运动次数。根据这项研究的结果,我们提倡使用 QMLE 来检测和纠正模型错误规范对估计不确定性和概率地震性能评估中使用的地面运动数量的影响。
{"title":"Effects of probability model misspecification on the number of ground motions required for seismic performance assessment","authors":"Chenhao Wu, Henry V Burton","doi":"10.1177/87552930241262044","DOIUrl":"https://doi.org/10.1177/87552930241262044","url":null,"abstract":"The number of ground motions used in nonlinear response history analysis (NRHA) determines the precision of the parameter estimates obtained in seismic performance assessments. While this issue has been extensively studied in the earthquake engineering literature, the relationship of probability model misspecification to parameter estimation uncertainty, and the implication to the required number of ground motions needed for NRHA, has not been examined. Probability model misspecification has the potential to increase estimation uncertainty and hence requires a greater number of ground motions to achieve the same precision compared to when misspecification is disregarded. This study develops a procedure to determine the required number of ground motions in seismic code-prescriptive and risk-based assessments with possible probability model misspecification. Specifically, we employ the quasi-maximum likelihood estimation (QMLE), which is robust to probability model misspecification, to evaluate estimation uncertainty. The QMLE approach is applied to an archetype California bridge under the two seismic assessment scenarios. In the code-prescriptive assessment, misspecification errors are identified for dispersion estimates of the bridge column ductility demand. In the most extreme case of the risk-based evaluation, misspecification increases the estimation uncertainty of the mean annual frequency of exceeding a limit state by as much as three times, which substantially increases the required number of ground motions. Based on the findings from this study, we advocate for the use of QMLE to detect and rectify the implications of model misspecification to estimation uncertainty and the number of ground motions used in probabilistic seismic performance assessments.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-scale building damage assessment based on recurrent neural networks using SAR coherence time series: A case study of 2023 Turkey–Syria earthquake 基于利用合成孔径雷达相干时间序列的递归神经网络的大规模建筑物损坏评估:2023 年土耳其-叙利亚地震案例研究
IF 5 2区 工程技术 Q2 ENGINEERING, CIVIL Pub Date : 2024-07-30 DOI: 10.1177/87552930241262761
Yanchen Yang, Chou Xie, Bangsen Tian, Yihong Guo, Yu Zhu, Ying Yang, Haoran Fang, Shuaichen Bian, Ming Zhang
The Turkey–Syria earthquakes that occurred on February 6, 2023, have caused significant human casualties and economic damage. Emergency services require quick and accurate assessments of widespread building damage in affected areas. This can be facilitated by using remote sensing methods, specifically all-day and all-weather Synthetic Aperture Radar (SAR). In this study, we aimed to improve the detection of building anomalies in earthquake-affected areas using SAR images. To achieve this, we employed Recurrent Neural Network (RNN) to train coherence time series and predict co-seismic coherence. This approach allowed us to generate a Damage Proxy Map (DPM) for building damage assessment. The results of our study indicated that the estimated proportion of building damage in Kahramanmaras was approximately 24.08%. These findings were consistent with the actual damage observed in the field. Moreover, when utilizing the mean and standard deviation of coherence time series, our method achieved higher accuracy (0.761) and a lower false alarm rate (0.136) compared to directly using coherence with only two views of SAR data. Overall, our study demonstrates that this method provides an accurate and reliable approach for post-earthquake building damage assessment.
2023 年 2 月 6 日发生的土耳其-叙利亚地震造成了重大人员伤亡和经济损失。应急服务需要对受灾地区广泛的建筑物损坏情况进行快速准确的评估。使用遥感方法,特别是全天候合成孔径雷达(SAR),可以帮助实现这一目标。在本研究中,我们旨在利用合成孔径雷达图像改进对地震灾区建筑物异常的检测。为此,我们采用了循环神经网络(RNN)来训练相干性时间序列并预测共震相干性。通过这种方法,我们生成了用于建筑物损坏评估的损坏代理图(DPM)。研究结果表明,卡赫拉曼马拉什的建筑物受损比例估计约为 24.08%。这些结果与实地观察到的实际损坏情况相符。此外,在利用相干性时间序列的平均值和标准偏差时,我们的方法比直接利用仅有两个视角的合成孔径雷达数据的相干性获得了更高的准确率(0.761)和更低的误报率(0.136)。总之,我们的研究表明,该方法为震后建筑物损坏评估提供了一种准确可靠的方法。
{"title":"Large-scale building damage assessment based on recurrent neural networks using SAR coherence time series: A case study of 2023 Turkey–Syria earthquake","authors":"Yanchen Yang, Chou Xie, Bangsen Tian, Yihong Guo, Yu Zhu, Ying Yang, Haoran Fang, Shuaichen Bian, Ming Zhang","doi":"10.1177/87552930241262761","DOIUrl":"https://doi.org/10.1177/87552930241262761","url":null,"abstract":"The Turkey–Syria earthquakes that occurred on February 6, 2023, have caused significant human casualties and economic damage. Emergency services require quick and accurate assessments of widespread building damage in affected areas. This can be facilitated by using remote sensing methods, specifically all-day and all-weather Synthetic Aperture Radar (SAR). In this study, we aimed to improve the detection of building anomalies in earthquake-affected areas using SAR images. To achieve this, we employed Recurrent Neural Network (RNN) to train coherence time series and predict co-seismic coherence. This approach allowed us to generate a Damage Proxy Map (DPM) for building damage assessment. The results of our study indicated that the estimated proportion of building damage in Kahramanmaras was approximately 24.08%. These findings were consistent with the actual damage observed in the field. Moreover, when utilizing the mean and standard deviation of coherence time series, our method achieved higher accuracy (0.761) and a lower false alarm rate (0.136) compared to directly using coherence with only two views of SAR data. Overall, our study demonstrates that this method provides an accurate and reliable approach for post-earthquake building damage assessment.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":5.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141863235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seismic performance and damage assessment of bridges during the 2023 Kahramanmaras, Türkiye earthquakes (Mw = 7.8, Mw = 7.6) 2023 年土耳其卡赫拉曼马拉什地震(Mw = 7.8,Mw = 7.6)期间桥梁的抗震性能和损坏评估
IF 3.1 2区 工程技术 Q2 ENGINEERING, CIVIL Pub Date : 2024-07-27 DOI: 10.1177/87552930241262043
Selcuk Bas, Jeffrey Hunt, B. Gencturk, Ezra Jampole, Y. B. Sonmezer, Brent Chancellor, Patrick C. Bassal, Murat Celiker, N. Apaydın, Halil Sezen
This article presents a summary of the damage observed in bridges in the regions affected by the 6 February 2023 Kahramanmaras, Türkiye earthquake sequence. A bridge database was developed based on the observations from multiple reconnaissance groups that visited the bridges. These reconnaissance groups collectively visited 140 individual bridges that were subjected to various intensities of ground shaking. The severity of the observed damage ranged from no damage to total collapse. The types of damage to bridge components mainly included cracking and shifting of abutments, failure of pier cap shear blocks, shifting or dislodging of bearing pads, cracking of girders and loss of prestress, plastic hinging at pier bases, residual pier drift, and distress to deck surfaces, handrails, and carried utilities. Recorded and estimated seismic intensity measures are presented for each bridge site, and statistical information and correlations were developed considering the intensity of shaking, bridge parameters, and observed damage. Observations from a few visited sites are presented as case studies to illustrate the common failure mechanisms. The bridge database and presented results are expected to serve as a reference for further analysis, such as statistical verification, correlation, or damage estimations, and discussion regarding the mitigation of the observed vulnerabilities of bridges in Türkiye and those with similar construction worldwide.
本文概述了 2023 年 2 月 6 日土耳其卡赫拉曼马拉什地震波及地区的桥梁受损情况。根据多个勘察小组对桥梁的观测结果,建立了桥梁数据库。这些考察小组共考察了 140 座桥梁,这些桥梁受到了不同强度的地面震动。观察到的损坏严重程度从无损坏到完全倒塌不等。桥梁构件的损坏类型主要包括桥墩开裂和移位、墩帽剪力块失效、承台移位或脱落、大梁开裂和预应力损失、墩基塑性铰链、残留墩身漂移,以及桥面、扶手和承载的公用设施受损。每个桥址都提供了记录和估计的地震烈度测量值,并根据地震烈度、桥梁参数和观察到的损坏情况编制了统计信息和相关性。作为案例研究,还介绍了几个考察点的观测结果,以说明常见的破坏机制。桥梁数据库和提交的结果可作为进一步分析的参考,如统计验证、相关性或损害估算,以及有关减轻土耳其和全球类似建筑的桥梁所观察到的脆弱性的讨论。
{"title":"Seismic performance and damage assessment of bridges during the 2023 Kahramanmaras, Türkiye earthquakes (Mw = 7.8, Mw = 7.6)","authors":"Selcuk Bas, Jeffrey Hunt, B. Gencturk, Ezra Jampole, Y. B. Sonmezer, Brent Chancellor, Patrick C. Bassal, Murat Celiker, N. Apaydın, Halil Sezen","doi":"10.1177/87552930241262043","DOIUrl":"https://doi.org/10.1177/87552930241262043","url":null,"abstract":"This article presents a summary of the damage observed in bridges in the regions affected by the 6 February 2023 Kahramanmaras, Türkiye earthquake sequence. A bridge database was developed based on the observations from multiple reconnaissance groups that visited the bridges. These reconnaissance groups collectively visited 140 individual bridges that were subjected to various intensities of ground shaking. The severity of the observed damage ranged from no damage to total collapse. The types of damage to bridge components mainly included cracking and shifting of abutments, failure of pier cap shear blocks, shifting or dislodging of bearing pads, cracking of girders and loss of prestress, plastic hinging at pier bases, residual pier drift, and distress to deck surfaces, handrails, and carried utilities. Recorded and estimated seismic intensity measures are presented for each bridge site, and statistical information and correlations were developed considering the intensity of shaking, bridge parameters, and observed damage. Observations from a few visited sites are presented as case studies to illustrate the common failure mechanisms. The bridge database and presented results are expected to serve as a reference for further analysis, such as statistical verification, correlation, or damage estimations, and discussion regarding the mitigation of the observed vulnerabilities of bridges in Türkiye and those with similar construction worldwide.","PeriodicalId":11392,"journal":{"name":"Earthquake Spectra","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141797334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Earthquake Spectra
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1