3D Optical Reconstruction of the Nervous System of the Whole-Body Marine Invertebrates

Valentin A. Milichko*,  and , Vyacheslav Dyachuk*, 
{"title":"3D Optical Reconstruction of the Nervous System of the Whole-Body Marine Invertebrates","authors":"Valentin A. Milichko*,&nbsp; and ,&nbsp;Vyacheslav Dyachuk*,&nbsp;","doi":"10.1021/cbmi.3c00087","DOIUrl":null,"url":null,"abstract":"<p >Optical clearing of invertebrates, the number of species of which is 20 times greater than that of vertebrates, is of fundamental and applied interest for neuroscience in general. Herein, the optical clearing of invertebrates to identify their morphology and neurostructure remains unrealized as of yet. Here, we report on fast (from a few seconds to minutes) and uniform whole-body optical clearing of invertebrates (bivalves, nemertines, annelids, and anomura) of any age and thickness (up to 2 cm) possessing complicated structures and integuments. We developed the protocol unifying dimethyl sulfoxide (DMSO)-based immunostaining of the animals followed by their optical clearing with benzyl alcohol/benzyl benzoate (BABB). Confocal microspectroscopy revealed that the protocol provides an increase of the fluorescence signal by 2 orders of magnitude and decrease of the light scattering by 2 orders of magnitude, thereby accelerating the confocal bioimaging of the whole body. Moreover, by tracking the optical clearing over time with 0.3 s resolution, we revealed that the clearing process is described by the Gompertz growth function, allowing us to determine the physical mechanism of the clearing and its optical parameters. Thereby, we were able to identify in detail and to describe previously unknown neurostructures of different invertebrate animals, paving the way to discovery in neuroscience.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"1 9","pages":"852–863"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.3c00087","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.3c00087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optical clearing of invertebrates, the number of species of which is 20 times greater than that of vertebrates, is of fundamental and applied interest for neuroscience in general. Herein, the optical clearing of invertebrates to identify their morphology and neurostructure remains unrealized as of yet. Here, we report on fast (from a few seconds to minutes) and uniform whole-body optical clearing of invertebrates (bivalves, nemertines, annelids, and anomura) of any age and thickness (up to 2 cm) possessing complicated structures and integuments. We developed the protocol unifying dimethyl sulfoxide (DMSO)-based immunostaining of the animals followed by their optical clearing with benzyl alcohol/benzyl benzoate (BABB). Confocal microspectroscopy revealed that the protocol provides an increase of the fluorescence signal by 2 orders of magnitude and decrease of the light scattering by 2 orders of magnitude, thereby accelerating the confocal bioimaging of the whole body. Moreover, by tracking the optical clearing over time with 0.3 s resolution, we revealed that the clearing process is described by the Gompertz growth function, allowing us to determine the physical mechanism of the clearing and its optical parameters. Thereby, we were able to identify in detail and to describe previously unknown neurostructures of different invertebrate animals, paving the way to discovery in neuroscience.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海洋无脊椎动物全身神经系统的三维光学重建
无脊椎动物的物种数量是脊椎动物的 20 倍,对无脊椎动物进行光学显微鉴定对整个神经科学具有基础性和应用性意义。在这里,通过光学清除无脊椎动物来识别其形态和神经结构的方法至今仍未实现。在此,我们报告了对任何年龄和厚度(最长 2 厘米)、具有复杂结构和完整器官的无脊椎动物(双壳类、无脊椎动物、无脊椎动物和无脊椎动物)进行快速(从几秒到几分钟)和均匀的全身光学清除的方法。我们制定了一套统一的方案,先用二甲基亚砜(DMSO)对动物进行免疫染色,然后用苯甲醇/苯甲酸苄酯(BABB)对其进行光学清除。共聚焦显微光谱分析显示,该方案可将荧光信号提高 2 个数量级,将光散射降低 2 个数量级,从而加速全身共聚焦生物成像。此外,通过跟踪 0.3 秒分辨率的光学清除时间,我们发现清除过程是由贡珀茨增长函数描述的,从而确定了清除的物理机制及其光学参数。因此,我们能够详细识别和描述不同无脊椎动物以前未知的神经结构,为神经科学的发现铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical & Biomedical Imaging
Chemical & Biomedical Imaging 化学与生物成像-
CiteScore
1.00
自引率
0.00%
发文量
0
期刊介绍: Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging
期刊最新文献
Issue Editorial Masthead Issue Publication Information Issue Publication Information Issue Editorial Masthead Laser-Treated Screen-Printed Carbon Electrodes for Electrochemiluminescence imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1