Development of a Data-Driven Soft Sensor for Multivariate Chemical Processes Using Concordance Correlation Coefficient Subsets Integrated with Parallel Inverse-Free Extreme Learning Machine

Thirasit Kusolsongtawee, Soorathep Kheawhom, Sorin Olaru, Pornchai Bumroongsri
{"title":"Development of a Data-Driven Soft Sensor for Multivariate Chemical Processes Using Concordance Correlation Coefficient Subsets Integrated with Parallel Inverse-Free Extreme Learning Machine","authors":"Thirasit Kusolsongtawee, Soorathep Kheawhom, Sorin Olaru, Pornchai Bumroongsri","doi":"10.4186/ej.2023.27.6.25","DOIUrl":null,"url":null,"abstract":". Nonlinearity, complexity, and technological limitations are causes of troublesome measurements in multivariate chemical processes. In order to deal with these problems, a soft sensor based on concordance correlation coefficient subsets integrated with parallel inverse-free extreme learning machine (CCCS-PIFELM) is proposed for multivariate chemical processes. In comparison to the forward propagation architecture of neural network with a single hidden layer, i.e., a traditional extreme learning machine (ELM), the CCCS-PIFELM approach has two notable points. Firstly, there are two subsets obtained through the concordance correlation coefficient (CCC) values between input and output variables. Hence, impacts of input variables on output variables can be assessed. Secondly, an inverse-free algorithm is used to reduce the computational load. In the evaluation of the prediction performance, the Tennessee Eastman (TE) benchmark process is employed as a case study to develop the CCCS-PIFELM approach for predicting product compositions. According to the simulation results, the proposed CCCS-PIFELM approach can obtain higher prediction accuracy compared to traditional approaches.","PeriodicalId":11618,"journal":{"name":"Engineering Journal","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4186/ej.2023.27.6.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. Nonlinearity, complexity, and technological limitations are causes of troublesome measurements in multivariate chemical processes. In order to deal with these problems, a soft sensor based on concordance correlation coefficient subsets integrated with parallel inverse-free extreme learning machine (CCCS-PIFELM) is proposed for multivariate chemical processes. In comparison to the forward propagation architecture of neural network with a single hidden layer, i.e., a traditional extreme learning machine (ELM), the CCCS-PIFELM approach has two notable points. Firstly, there are two subsets obtained through the concordance correlation coefficient (CCC) values between input and output variables. Hence, impacts of input variables on output variables can be assessed. Secondly, an inverse-free algorithm is used to reduce the computational load. In the evaluation of the prediction performance, the Tennessee Eastman (TE) benchmark process is employed as a case study to develop the CCCS-PIFELM approach for predicting product compositions. According to the simulation results, the proposed CCCS-PIFELM approach can obtain higher prediction accuracy compared to traditional approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于一致性相关系数子集和并行无逆极值学习机的多元化学过程数据驱动软传感器研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensile Coupon Testing and Residual Stress Measurements of High-Strength Steel Built-Up I-Shaped Sections Lateral-Torsional Buckling Modification Factors in Steel I-Shaped Members: Recommendations Using Energy-Based Formulations Torsional Design of Round HSS Members— A Critical Review The Adoption of AISC 360 for Offshore Structural Design Practices Steel Structures Research Update: Innovative Steel Deck System for Highway Bridge Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1