Mahmoud S. Alkathy, Srinivas Pattipaka, Mansour K. Gatasheh, H. A. Kassim, Mohamed Saad Daoud, Jose A. Eiras
{"title":"Achieving high energy storage performance and efficiency in lead-free SrTiO <sub>3</sub> ceramics via neodymium and lithium co-doping technique","authors":"Mahmoud S. Alkathy, Srinivas Pattipaka, Mansour K. Gatasheh, H. A. Kassim, Mohamed Saad Daoud, Jose A. Eiras","doi":"10.1080/21870764.2023.2259149","DOIUrl":null,"url":null,"abstract":"There is an immediate demand for eco-friendly, high-performance, and highly stable energy storage materials for pulse power systems. Ceramics based on SrTiO3 have a high breakdown strength (BDS) and dielectric constant. In this work, we fabricated a polycrystalline of Sr(1-x)(Nd, Li)xTiO3 ceramics via microwave-assisted heating of the starting materials. X-ray diffraction analysis reveals a pure perovskite phase without any secondary phase. Scanning electron microscopy images exhibit dense grain morphology with a decrease in grain size as the dopant concentration increases. The frequency dependences of the dielectric properties were studied in the frequency range of 100 Hz-1 MHz at room temperature. The polarization-electric field hysteresis loops were examined to ascertain the effect of co-doping on the energy-storage capability of SrTiO3 ceramics. After increasing the co-dopants from 0 to 8%, the energy density increased nine times (from 0.11 J/cm3 to 0.952 J/cm3), and the energy storage efficiency increased from 80.71% to 95.98%, respectively. In addition, the samples demonstrate excellent thermal stability, and their energy storage properties are stable up to 80°C. We may infer from this discovery that the bulk Nd3+ and Li+ co-doped SrTiO3 materials are good candidates for high-energy-density capacitor applications.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Ceramic Societies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21870764.2023.2259149","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
There is an immediate demand for eco-friendly, high-performance, and highly stable energy storage materials for pulse power systems. Ceramics based on SrTiO3 have a high breakdown strength (BDS) and dielectric constant. In this work, we fabricated a polycrystalline of Sr(1-x)(Nd, Li)xTiO3 ceramics via microwave-assisted heating of the starting materials. X-ray diffraction analysis reveals a pure perovskite phase without any secondary phase. Scanning electron microscopy images exhibit dense grain morphology with a decrease in grain size as the dopant concentration increases. The frequency dependences of the dielectric properties were studied in the frequency range of 100 Hz-1 MHz at room temperature. The polarization-electric field hysteresis loops were examined to ascertain the effect of co-doping on the energy-storage capability of SrTiO3 ceramics. After increasing the co-dopants from 0 to 8%, the energy density increased nine times (from 0.11 J/cm3 to 0.952 J/cm3), and the energy storage efficiency increased from 80.71% to 95.98%, respectively. In addition, the samples demonstrate excellent thermal stability, and their energy storage properties are stable up to 80°C. We may infer from this discovery that the bulk Nd3+ and Li+ co-doped SrTiO3 materials are good candidates for high-energy-density capacitor applications.
期刊介绍:
The Journal of Asian Ceramic Societies is an open access journal publishing papers documenting original research and reviews covering all aspects of science and technology of Ceramics, Glasses, Composites, and related materials. These papers include experimental and theoretical aspects emphasizing basic science, processing, microstructure, characteristics, and functionality of ceramic materials. The journal publishes high quality full papers, letters for rapid publication, and in-depth review articles. All papers are subjected to a fair peer-review process.