{"title":"Scattering and Diffraction Evaluated by Physical Optics Surface Current on a Truncated Cylindrical Conductive Cap","authors":"Mustafa Kara, Mustafa Mutlu","doi":"10.13052/2023.aces.j.380502","DOIUrl":null,"url":null,"abstract":"In this study physical optics (PO) surface current is obtained by using the Malyughinetz solution to get the scattered field expression for a truncated cylindrical conductive cap satisfying the related boundary conditions given throughout this paper. This is done by using the inverse edge point method for the transformation from the Malyughinetz solution for the wave diffraction by a half plane to the wave diffraction by a truncated conductive cylinder. This transformation method can be used to examine the diffraction and scattering phenomena for curved surfaces having discontinuities as dealt with in this work. Total scattered field comprising the incident and scattered fields is plotted with respect to the observation angle for some parameters of the problem. The obtained results are examined numerically for the same parameters.","PeriodicalId":8207,"journal":{"name":"Applied Computational Electromagnetics Society Journal","volume":"97 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computational Electromagnetics Society Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/2023.aces.j.380502","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study physical optics (PO) surface current is obtained by using the Malyughinetz solution to get the scattered field expression for a truncated cylindrical conductive cap satisfying the related boundary conditions given throughout this paper. This is done by using the inverse edge point method for the transformation from the Malyughinetz solution for the wave diffraction by a half plane to the wave diffraction by a truncated conductive cylinder. This transformation method can be used to examine the diffraction and scattering phenomena for curved surfaces having discontinuities as dealt with in this work. Total scattered field comprising the incident and scattered fields is plotted with respect to the observation angle for some parameters of the problem. The obtained results are examined numerically for the same parameters.
期刊介绍:
The ACES Journal is devoted to the exchange of information in computational electromagnetics, to the advancement of the state of the art, and to the promotion of related technical activities. A primary objective of the information exchange is the elimination of the need to "re-invent the wheel" to solve a previously solved computational problem in electrical engineering, physics, or related fields of study.
The ACES Journal welcomes original, previously unpublished papers, relating to applied computational electromagnetics. All papers are refereed.
A unique feature of ACES Journal is the publication of unsuccessful efforts in applied computational electromagnetics. Publication of such material provides a means to discuss problem areas in electromagnetic modeling. Manuscripts representing an unsuccessful application or negative result in computational electromagnetics is considered for publication only if a reasonable expectation of success (and a reasonable effort) are reflected.
The technical activities promoted by this publication include code validation, performance analysis, and input/output standardization; code or technique optimization and error minimization; innovations in solution technique or in data input/output; identification of new applications for electromagnetics modeling codes and techniques; integration of computational electromagnetics techniques with new computer architectures; and correlation of computational parameters with physical mechanisms.