{"title":"Animal-borne sensors as a biologically informed lens on a changing climate","authors":"Diego Ellis-Soto, Martin Wikelski, Walter Jetz","doi":"10.1038/s41558-023-01781-7","DOIUrl":null,"url":null,"abstract":"As climate change transforms the biosphere, more comprehensive and biologically relevant measurements of changing conditions are needed. Traditional climate measurements are often constrained by geographically static, coarse, sparse and biased sampling, and only indirect links to ecological responses. Here we discuss how animal-borne sensors can deliver spatially fine-grain, biologically fine-tuned, relevant sampling of climatic conditions in support of ecological and climatic forecasting. Millions of fine-scale meteorological observations from over a thousand species have already been collected by animal-borne sensors. We highlight the opportunities that these growing data have for the intersection of biodiversity and climate science, particularly in terrestrial environments. Tagged animals worldwide could close critical data gaps, provide insights about changing ecosystems and broadly function as active environmental sentinels. In this Perspective, the authors highlight the potential of animal-borne sensors to overcome common limitations of traditional climate measurements. Animal-borne sensors can provide fine-grained and ecologically relevant sampling, and tagged animals could function as environmental sentinels worldwide.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"13 10","pages":"1042-1054"},"PeriodicalIF":29.6000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-023-01781-7","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
As climate change transforms the biosphere, more comprehensive and biologically relevant measurements of changing conditions are needed. Traditional climate measurements are often constrained by geographically static, coarse, sparse and biased sampling, and only indirect links to ecological responses. Here we discuss how animal-borne sensors can deliver spatially fine-grain, biologically fine-tuned, relevant sampling of climatic conditions in support of ecological and climatic forecasting. Millions of fine-scale meteorological observations from over a thousand species have already been collected by animal-borne sensors. We highlight the opportunities that these growing data have for the intersection of biodiversity and climate science, particularly in terrestrial environments. Tagged animals worldwide could close critical data gaps, provide insights about changing ecosystems and broadly function as active environmental sentinels. In this Perspective, the authors highlight the potential of animal-borne sensors to overcome common limitations of traditional climate measurements. Animal-borne sensors can provide fine-grained and ecologically relevant sampling, and tagged animals could function as environmental sentinels worldwide.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.