{"title":"Research on the artificial control method of the gas nuclei spectrum in the small-scale experimental pool under atmospheric pressure","authors":"Meicheng Yang, Lijia Yang, Daojiang Li, Zhiyong Jiang, Shuo Hou, Haichao Li","doi":"10.1515/nleng-2022-0296","DOIUrl":null,"url":null,"abstract":"Abstract With the improvement of the accuracy of experimental devices and measuring instruments, cavitation experiments such as cross-media vehicles and propellers have been carried out in small pools. However, the water quality in the laboratory and the engineering application waters differs, especially the concentration of the gas nuclei that cause cavitation, resulting in experimental results that differ from prototype experimental results, and the scale effect occurs. In order to reduce the influence of the scale effect, according to the conditions of cavitation, gas nuclei can be mixed with water before the experiment is formally implemented. Aeration behavior will affect the size and concentration of gas nuclei (gas nuclei spectrum) in water. In order to obtain better experimental results, it is necessary to clarify the variation of the gas nuclei spectrum in small-scale experimental pools before and after aeration, so as to master aeration technology. Through research, it is found that the artificial aeration method can effectively change the gas nuclei spectrum in water and increase the concentration of gas nuclei. By using the underwater acoustic measurement method, the change in the gas nuclei spectrum can be captured sensitively. The gas nuclei spectrum in water after aeration is in good agreement with the mathematical model of gas nuclei spectrum under non-artificial intervention, which shows that the distribution of gas nuclei in water under artificial aeration is similar to that under non-artificial intervention, which is conducive to the occurrence of cavitation. At the same time, it shows that the combination of experiment and numerical method can reduce the measuring state and the measurement cost and improve the measurement efficiency.","PeriodicalId":37863,"journal":{"name":"Nonlinear Engineering - Modeling and Application","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Engineering - Modeling and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nleng-2022-0296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract With the improvement of the accuracy of experimental devices and measuring instruments, cavitation experiments such as cross-media vehicles and propellers have been carried out in small pools. However, the water quality in the laboratory and the engineering application waters differs, especially the concentration of the gas nuclei that cause cavitation, resulting in experimental results that differ from prototype experimental results, and the scale effect occurs. In order to reduce the influence of the scale effect, according to the conditions of cavitation, gas nuclei can be mixed with water before the experiment is formally implemented. Aeration behavior will affect the size and concentration of gas nuclei (gas nuclei spectrum) in water. In order to obtain better experimental results, it is necessary to clarify the variation of the gas nuclei spectrum in small-scale experimental pools before and after aeration, so as to master aeration technology. Through research, it is found that the artificial aeration method can effectively change the gas nuclei spectrum in water and increase the concentration of gas nuclei. By using the underwater acoustic measurement method, the change in the gas nuclei spectrum can be captured sensitively. The gas nuclei spectrum in water after aeration is in good agreement with the mathematical model of gas nuclei spectrum under non-artificial intervention, which shows that the distribution of gas nuclei in water under artificial aeration is similar to that under non-artificial intervention, which is conducive to the occurrence of cavitation. At the same time, it shows that the combination of experiment and numerical method can reduce the measuring state and the measurement cost and improve the measurement efficiency.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.