Convolutional neural network for UAV image processing and navigation in tree plantations based on deep learning

IF 2.4 Q2 ENGINEERING, MECHANICAL Nonlinear Engineering - Modeling and Application Pub Date : 2023-01-01 DOI:10.1515/nleng-2022-0299
Shuiqing Xiao
{"title":"Convolutional neural network for UAV image processing and navigation in tree plantations based on deep learning","authors":"Shuiqing Xiao","doi":"10.1515/nleng-2022-0299","DOIUrl":null,"url":null,"abstract":"Abstract In this study, we show a new way for a small unmanned aerial vehicle (UAV) to move around on its own in the plantations of the tree using a single camera only. To avoid running into trees, a control plan was put into place. The detection model looks at the image heights of the trees it finds to figure out how far away they are from the UAV. It then looks at the widths of the image between the trees without any obstacles to finding the largest space. The purpose of this research is to investigate how virtual reality (VR) may improve student engagement and outcomes in the classroom. The emotional consequences of virtual reality on learning, such as motivation and enjoyment, are also explored, making this fascinating research. To investigate virtual reality’s potential as a creative and immersive tool for boosting educational experiences, the study adopts a controlled experimental method. This study’s most significant contributions are the empirical evidence it provides for the efficacy of virtual reality in education, the illumination of the impact VR has on various aspects of learning, and the recommendations it offers to educators on how to make the most of VR in the classroom.","PeriodicalId":37863,"journal":{"name":"Nonlinear Engineering - Modeling and Application","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Engineering - Modeling and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nleng-2022-0299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this study, we show a new way for a small unmanned aerial vehicle (UAV) to move around on its own in the plantations of the tree using a single camera only. To avoid running into trees, a control plan was put into place. The detection model looks at the image heights of the trees it finds to figure out how far away they are from the UAV. It then looks at the widths of the image between the trees without any obstacles to finding the largest space. The purpose of this research is to investigate how virtual reality (VR) may improve student engagement and outcomes in the classroom. The emotional consequences of virtual reality on learning, such as motivation and enjoyment, are also explored, making this fascinating research. To investigate virtual reality’s potential as a creative and immersive tool for boosting educational experiences, the study adopts a controlled experimental method. This study’s most significant contributions are the empirical evidence it provides for the efficacy of virtual reality in education, the illumination of the impact VR has on various aspects of learning, and the recommendations it offers to educators on how to make the most of VR in the classroom.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的人工林地无人机图像处理与导航卷积神经网络
在这项研究中,我们展示了一种新的方法,使小型无人机(UAV)仅使用单个相机在树木种植园中自行移动。为了避免撞到树,制定了一个控制计划。检测模型查看图像中树木的高度,以计算出它们离无人机有多远。然后,它会在没有任何障碍的情况下查看树木之间的图像宽度,以找到最大的空间。本研究的目的是调查虚拟现实(VR)如何提高学生在课堂上的参与度和成果。虚拟现实对学习的情感影响,如动机和享受,也进行了探索,使这个有趣的研究。为了研究虚拟现实作为一种创造性和沉浸式的提高教育体验的工具的潜力,本研究采用了一种对照实验方法。这项研究最重要的贡献是它为虚拟现实在教育中的功效提供了经验证据,阐明了VR对学习各个方面的影响,并为教育工作者提供了如何在课堂上充分利用VR的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.20
自引率
3.60%
发文量
49
审稿时长
44 weeks
期刊介绍: The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.
期刊最新文献
Study of time-fractional delayed differential equations via new integral transform-based variation iteration technique Convolutional neural network for UAV image processing and navigation in tree plantations based on deep learning Nonlinear adaptive sliding mode control with application to quadcopters Equilibrium stability of dynamic duopoly Cournot game under heterogeneous strategies, asymmetric information, and one-way R&D spillovers A versatile dynamic noise control framework based on computer simulation and modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1