Robust methods for detecting bad leverage point in logistic regression

Ebru GÜNDOĞAN AŞIK
{"title":"Robust methods for detecting bad leverage point in logistic regression","authors":"Ebru GÜNDOĞAN AŞIK","doi":"10.14744/sigma.2023.00108","DOIUrl":null,"url":null,"abstract":"High-leverage points, known as good and bad leverage points, are also known as points away from center of x space. Bad leverage points are marginal values that show the incompatibility with misclassified observations and other observation values at x space. In the identification of bad leverage points, the problems of masking and swamping constitute a problem for the logistic regression model just as in the linear regression model. In this research, in addition to existing deviance components (DEVC), robust deviance components (RobDEVC) that are used to identify bad leverage points, different robust methods recommended to be used at the management of deviance components were examined. Also, for these methods, robust cut-off value combinations were examined as well. With the conducted simulation, robust methods recommended to be used in the deviance component method have shown better performance to identify bad leverage points by showing different cut-off values","PeriodicalId":45000,"journal":{"name":"Sigma Journal of Engineering and Natural Sciences-Sigma Muhendislik ve Fen Bilimleri Dergisi","volume":"3 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sigma Journal of Engineering and Natural Sciences-Sigma Muhendislik ve Fen Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14744/sigma.2023.00108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-leverage points, known as good and bad leverage points, are also known as points away from center of x space. Bad leverage points are marginal values that show the incompatibility with misclassified observations and other observation values at x space. In the identification of bad leverage points, the problems of masking and swamping constitute a problem for the logistic regression model just as in the linear regression model. In this research, in addition to existing deviance components (DEVC), robust deviance components (RobDEVC) that are used to identify bad leverage points, different robust methods recommended to be used at the management of deviance components were examined. Also, for these methods, robust cut-off value combinations were examined as well. With the conducted simulation, robust methods recommended to be used in the deviance component method have shown better performance to identify bad leverage points by showing different cut-off values
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逻辑回归中不良杠杆点检测的鲁棒方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
60
审稿时长
24 weeks
期刊最新文献
The best journey in Turkish cuisine: Some Meat-based ethnic foods types and investigation of some water-soluble vitamins compositions by HPLC procedure On orthogonal fuzzy b-metric-like spaces and their fixed point application Observation of experts, attitudes through multi-criteria decision-making Modeling and implementation of demand-side energy management system Robust methods for detecting bad leverage point in logistic regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1