SRAM In-Memory Computing Macro With Delta-Sigma Modulator-Based Variable-Resolution Activation

IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Solid-State Circuits Letters Pub Date : 2023-10-24 DOI:10.1109/LSSC.2023.3327213
Vasundhara Damodaran;Ziyu Liu;Jian Meng;Jae-Sun Seo;Arindam Sanyal
{"title":"SRAM In-Memory Computing Macro With Delta-Sigma Modulator-Based Variable-Resolution Activation","authors":"Vasundhara Damodaran;Ziyu Liu;Jian Meng;Jae-Sun Seo;Arindam Sanyal","doi":"10.1109/LSSC.2023.3327213","DOIUrl":null,"url":null,"abstract":"This letter presents an SRAM-based compute-in-memory (CIM) macro that uses 1-bit \n<inline-formula> <tex-math>$\\Delta \\Sigma $ </tex-math></inline-formula>\n modulators to convert input and output activations to binary pulse waveform. The SRAM macro uses switched-capacitors for vector matrix multiplications and together with binary input activation improves linearity compared to current-domain SRAM CIM macros and allows reconfigurable activation resolution. The proposed macro is fabricated in 65 nm and benchmarked on MNIST and CIFAR-10 datasets with accuracies of 98.67% and 89.85%, respectively, with energy-efficiency in the range of 15.4–138.6 TOPS/W.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"6 ","pages":"293-296"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10293176/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This letter presents an SRAM-based compute-in-memory (CIM) macro that uses 1-bit $\Delta \Sigma $ modulators to convert input and output activations to binary pulse waveform. The SRAM macro uses switched-capacitors for vector matrix multiplications and together with binary input activation improves linearity compared to current-domain SRAM CIM macros and allows reconfigurable activation resolution. The proposed macro is fabricated in 65 nm and benchmarked on MNIST and CIFAR-10 datasets with accuracies of 98.67% and 89.85%, respectively, with energy-efficiency in the range of 15.4–138.6 TOPS/W.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于三角积分调制器可变分辨率激活的 SRAM 内存计算宏程序
这封信介绍了一种基于 SRAM 的内存计算 (CIM) 宏,它使用 1 位 $\Delta \Sigma $ 调制器将输入和输出激活转换为二进制脉冲波形。与电流域 SRAM CIM 宏相比,SRAM 宏使用开关电容器进行矢量矩阵乘法,加上二进制输入激活,提高了线性度,并允许重新配置激活分辨率。所提出的宏采用 65 纳米制造,并在 MNIST 和 CIFAR-10 数据集上进行了基准测试,准确率分别为 98.67% 和 89.85%,能效范围为 15.4-138.6 TOPS/W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Solid-State Circuits Letters
IEEE Solid-State Circuits Letters Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
3.70%
发文量
52
期刊最新文献
Ultrasensitive Reset-Less Integrator-Based PIN-Diode Receiver With Input Current Control Enhancing AI Acceleration: A Calibration-Free, PVT-Robust Analog Compute-in-Memory Macro With Activation Functions A 10-Gb/s Optical Receiver With Monolithically Integrated PIN Photodiode, Novel AGC, and Sensitivity of –27.1 dBm for BER 10-3 A 15.4-ppm/°C GaN-Based Voltage Reference With Process-Variation-Immunity and High PSR for Electric Vehicle Power Systems A 0.41-ns CLK-OUT Delay, 0.22-μVrms Input-Referred Noise CMOS Integration Dynamic Comparator With Flipping Capacitor for Charge Reuse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1