首页 > 最新文献

IEEE Solid-State Circuits Letters最新文献

英文 中文
Terahertz Sensing With CMOS-RFIC:Feasibility Verification for Short-Range Imaging Using 300-GHz MIMO Radar 利用 CMOS-RFIC 进行太赫兹传感:使用 300-GHz MIMO 雷达进行短距离成像的可行性验证
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-11-04 DOI: 10.1109/LSSC.2024.3490547
Ichiro Somada;Akihito Hirai;Akinori Taira;Keigo Nakatani;Kazuaki Ishioka;Takuma Nishimura;Koji Yamanaka
For solving various social issues, sensing technology has gained significant interest. Terahertz waves, which combine the high resolution of light and transparency of radio waves, enable visualization of obstacles behind internal structures. So, it offers potential for new solutions. This letter introduces the overview of a short-distance sensing system based on the full digital MIMO radar concept, the design, and fundamental evaluation results of 300 GHz RFIC using CMOS technology, as well as the achievements of imaging using 300 GHz terahertz wave based on actual measurements. Since the terahertz band can obtain an ultrawideband spectrum, several millimeter resolution imaging can be performed in azimuth, elevation, and depth direction. We show the feasibility of the security gate application with the measured high-resolution tomographic images.
为解决各种社会问题,传感技术受到了广泛关注。太赫兹波结合了光的高分辨率和无线电波的高透明度,能够对内部结构背后的障碍物进行可视化。因此,它为新的解决方案提供了潜力。这封信介绍了基于全数字 MIMO 雷达概念的短距离传感系统的概况、采用 CMOS 技术的 300 GHz 射频集成电路的设计和基本评估结果,以及基于实际测量利用 300 GHz 太赫兹波成像的成果。由于太赫兹波段可以获得超宽带频谱,因此可以在方位角、仰角和深度方向上进行几毫米分辨率的成像。我们通过测量到的高分辨率层析成像图展示了安全门应用的可行性。
{"title":"Terahertz Sensing With CMOS-RFIC:Feasibility Verification for Short-Range Imaging Using 300-GHz MIMO Radar","authors":"Ichiro Somada;Akihito Hirai;Akinori Taira;Keigo Nakatani;Kazuaki Ishioka;Takuma Nishimura;Koji Yamanaka","doi":"10.1109/LSSC.2024.3490547","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3490547","url":null,"abstract":"For solving various social issues, sensing technology has gained significant interest. Terahertz waves, which combine the high resolution of light and transparency of radio waves, enable visualization of obstacles behind internal structures. So, it offers potential for new solutions. This letter introduces the overview of a short-distance sensing system based on the full digital MIMO radar concept, the design, and fundamental evaluation results of 300 GHz RFIC using CMOS technology, as well as the achievements of imaging using 300 GHz terahertz wave based on actual measurements. Since the terahertz band can obtain an ultrawideband spectrum, several millimeter resolution imaging can be performed in azimuth, elevation, and depth direction. We show the feasibility of the security gate application with the measured high-resolution tomographic images.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"343-346"},"PeriodicalIF":2.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142671119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis and Optimization of Parasitics-Induced Peak Frequency Shift in Gain-Boosted N-Path Switched-Capacitor Bandpass Filter 分析和优化增益增强型 N 路径开关电容带通滤波器中由寄生引起的峰值频移
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-10-30 DOI: 10.1109/LSSC.2024.3488001
Lei Lei;Zhiming Chen
This letter proposes a $C/g_{m}$ method for analyzing the peak frequency shift caused by parasitic parameters in gain-boosted N-path switched-capacitor bandpass filter (GB-BPF). This method eliminates the device width variable, addressing the interdependencies among various parameters in GB-BPF. Numerical solution for peak frequency shift is obtained, and the impact of each variable on frequency shift is accurately quantified. Using the proposed $C/g_{m}$ variable, the optimal bias voltage is determined to minimize the peak frequency shift for same parasitic parameters. Additionally, optimization strategies for adjusting the filter capacitance and switching frequency are proposed. Finally, a GB-BPF is implemented in a 90-nm CMOS process. The accuracy of the analysis is verified by comparing the measured and simulated results with the theoretically derived results.
本文提出了一种 $C/g_{m}$ 方法,用于分析增益增强 N 路径开关电容带通滤波器(GB-BPF)中寄生参数引起的峰值频率偏移。该方法消除了器件宽度变量,解决了 GB-BPF 中各种参数之间的相互依存关系。得到了峰值频移的数值解,并准确量化了各变量对频移的影响。利用提出的 $C/g_{m}$ 变量,确定了最佳偏置电压,使相同寄生参数下的峰值频移最小。此外,还提出了调整滤波器电容和开关频率的优化策略。最后,在 90 纳米 CMOS 工艺中实现了 GB-BPF。通过比较测量和模拟结果与理论推导结果,验证了分析的准确性。
{"title":"Analysis and Optimization of Parasitics-Induced Peak Frequency Shift in Gain-Boosted N-Path Switched-Capacitor Bandpass Filter","authors":"Lei Lei;Zhiming Chen","doi":"10.1109/LSSC.2024.3488001","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3488001","url":null,"abstract":"This letter proposes a \u0000<inline-formula> <tex-math>$C/g_{m}$ </tex-math></inline-formula>\u0000 method for analyzing the peak frequency shift caused by parasitic parameters in gain-boosted N-path switched-capacitor bandpass filter (GB-BPF). This method eliminates the device width variable, addressing the interdependencies among various parameters in GB-BPF. Numerical solution for peak frequency shift is obtained, and the impact of each variable on frequency shift is accurately quantified. Using the proposed \u0000<inline-formula> <tex-math>$C/g_{m}$ </tex-math></inline-formula>\u0000 variable, the optimal bias voltage is determined to minimize the peak frequency shift for same parasitic parameters. Additionally, optimization strategies for adjusting the filter capacitance and switching frequency are proposed. Finally, a GB-BPF is implemented in a 90-nm CMOS process. The accuracy of the analysis is verified by comparing the measured and simulated results with the theoretically derived results.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"339-342"},"PeriodicalIF":2.2,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142645559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 28-GHz Variable-Gain Phase Shifter With Phase Compensation Using Analog Addition and Subtraction Method 利用模拟加减法实现相位补偿的 28 千兆赫可变增益移相器
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-10-29 DOI: 10.1109/LSSC.2024.3487586
Hsing-Hung Lin;Chung-Ping Chen;Yu-Teng Chang
In this letter, a 28-GHz variable-gain phase shifter (VG-PS) with phase compensation designed using a Gilbert-cell-based vector summation amplifier integrated with a current-type digital-to-analog converter (DAC) and a quadrature all-pass filter (QAF) I/Q generator, fabricated using the 90-nm CMOS process. The VG-PS achieves a 360° phase-shifting range with a 7-bit resolution and 7-dB gain-tuning range. The vector summation amplifier synthesizes a vector by combining in-phase and quadrature-phase signals, which are determined by the tail currents of the vector summation amplifier. Tail currents for the vector summation amplifier are generated and mirrored by the current-type DAC. Any mismatch between the DAC’s tail current and that of the vector summation amplifier results in amplitude and phase discrepancies in the synthesized vector. The proposed calibration method optimizes amplitude and phase accuracy through current addition and subtraction, eliminating the need for I/Q calibration of the QAF. Measurements show root-mean-square gain and phase errors of the VG-PS at 28 GHz to be 0.12 dB and 0.23°, respectively. The chip size of VG-PS is 0.723 mm2, including pads, and it consumes 32 mW at maximum gain state.
在这封信中,我们设计了一种具有相位补偿功能的 28 GHz 可变增益移相器 (VG-PS),它采用基于 Gilbert 单元的矢量求和放大器,并集成了电流型数模转换器 (DAC) 和正交全通滤波器 (QAF) I/Q 发生器,采用 90-nm CMOS 工艺制造。VG-PS 实现了 360° 相移范围,具有 7 位分辨率和 7 分贝增益调整范围。矢量求和放大器通过合并同相信号和正交相位信号合成矢量,这些信号由矢量求和放大器的尾电流决定。矢量求和放大器的尾电流由电流型 DAC 生成和镜像。DAC 的尾电流与矢量求和放大器的尾电流之间的任何不匹配都会导致合成矢量的振幅和相位差。拟议的校准方法通过电流加减法优化了振幅和相位精度,无需对 QAF 进行 I/Q 校准。测量结果表明,VG-PS 在 28 GHz 频率下的均方根增益和相位误差分别为 0.12 dB 和 0.23°。VG-PS 的芯片尺寸为 0.723 mm2(包括焊盘),最大增益状态下的功耗为 32 mW。
{"title":"A 28-GHz Variable-Gain Phase Shifter With Phase Compensation Using Analog Addition and Subtraction Method","authors":"Hsing-Hung Lin;Chung-Ping Chen;Yu-Teng Chang","doi":"10.1109/LSSC.2024.3487586","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3487586","url":null,"abstract":"In this letter, a 28-GHz variable-gain phase shifter (VG-PS) with phase compensation designed using a Gilbert-cell-based vector summation amplifier integrated with a current-type digital-to-analog converter (DAC) and a quadrature all-pass filter (QAF) I/Q generator, fabricated using the 90-nm CMOS process. The VG-PS achieves a 360° phase-shifting range with a 7-bit resolution and 7-dB gain-tuning range. The vector summation amplifier synthesizes a vector by combining in-phase and quadrature-phase signals, which are determined by the tail currents of the vector summation amplifier. Tail currents for the vector summation amplifier are generated and mirrored by the current-type DAC. Any mismatch between the DAC’s tail current and that of the vector summation amplifier results in amplitude and phase discrepancies in the synthesized vector. The proposed calibration method optimizes amplitude and phase accuracy through current addition and subtraction, eliminating the need for I/Q calibration of the QAF. Measurements show root-mean-square gain and phase errors of the VG-PS at 28 GHz to be 0.12 dB and 0.23°, respectively. The chip size of VG-PS is 0.723 mm2, including pads, and it consumes 32 mW at maximum gain state.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"335-338"},"PeriodicalIF":2.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 33.06-Gb/s Reconfigurable Galois Field oFEC Decoder for Optical Intersatellite Communication 用于卫星间光学通信的 33.06 Gb/s 可重构伽罗瓦场 oFEC 解码器
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-10-24 DOI: 10.1109/LSSC.2024.3486234
Xiangdong Wei;Yufan Yue;Seungkyu Choi;Tutu Ajayi;Ronald Dreslinski;David Blaauw;Hun-Seok Kim
We introduce a high-throughput reconfigurable forward error correction (FEC) decoder capable of decoding BCH, RS, and open FEC (oFEC) codes. With a reconfigurable BCH inner code, the proposed decoder in the oFEC mode provides a wide range of coding gain and throughput to enable efficient and reliable intersatellite optical communication. It features unprecedented reconfigurability for BCH/RS codes in terms of Galois field (GF) size, code length, code rate, and parallel factor, providing tradeoffs between error correction performance, energy, and throughput. Fabricated in 12-nm CMOS technology, the decoder achieves a throughput of 33.06 Gb/s, energy efficiency of 40.35 pJ/b, and a net coding gain of 7.27 dB at $10^{text {-6}}$ BER with an oFEC code using inner BCH(256, 223).
我们介绍了一种高吞吐量可重构前向纠错(FEC)解码器,它能够解码BCH、RS和开放式FEC(oFEC)编码。利用可重新配置的 BCH 内码,所提出的 oFEC 模式解码器可提供广泛的编码增益和吞吐量,从而实现高效可靠的卫星间光通信。它在伽罗瓦场(GF)大小、码长、码率和并行因子方面为 BCH/RS 编码提供了前所未有的可重构性,在纠错性能、能耗和吞吐量之间实现了权衡。该解码器采用 12 纳米 CMOS 技术制造,在使用内 BCH(256, 223) 的 oFEC 编码时,吞吐量达到 33.06 Gb/s,能效达到 40.35 pJ/b,误码率为 10^{text {-6}}$ 时的净编码增益为 7.27 dB。
{"title":"A 33.06-Gb/s Reconfigurable Galois Field oFEC Decoder for Optical Intersatellite Communication","authors":"Xiangdong Wei;Yufan Yue;Seungkyu Choi;Tutu Ajayi;Ronald Dreslinski;David Blaauw;Hun-Seok Kim","doi":"10.1109/LSSC.2024.3486234","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3486234","url":null,"abstract":"We introduce a high-throughput reconfigurable forward error correction (FEC) decoder capable of decoding BCH, RS, and open FEC (oFEC) codes. With a reconfigurable BCH inner code, the proposed decoder in the oFEC mode provides a wide range of coding gain and throughput to enable efficient and reliable intersatellite optical communication. It features unprecedented reconfigurability for BCH/RS codes in terms of Galois field (GF) size, code length, code rate, and parallel factor, providing tradeoffs between error correction performance, energy, and throughput. Fabricated in 12-nm CMOS technology, the decoder achieves a throughput of 33.06 Gb/s, energy efficiency of 40.35 pJ/b, and a net coding gain of 7.27 dB at \u0000<inline-formula> <tex-math>$10^{text {-6}}$ </tex-math></inline-formula>\u0000 BER with an oFEC code using inner BCH(256, 223).","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"331-334"},"PeriodicalIF":2.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-Modulated-LO-Path Vector Modulators for Beamforming Receivers 用于波束成形接收器的时间调制-LO-路径矢量调制器
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-10-11 DOI: 10.1109/LSSC.2024.3478837
Petar Barac;Matthew Bajor;Peter R. Kinget
A time-modulated LO (TM-LO) vector modulator (VM) architecture using a time domain approach for amplitude scaling and phase shifting received signals is presented. The TM-LO uses rail-to-rail LO waveforms generated from digitally synthesized blocks and pass-gate switches to perform the amplitude/phase control. A single element receiver achieves 0.2 dB RMS gain error and 1.4° RMS phase error with 5 bits of amplitude/phase resolution across a 360° range is implemented in a 65 nm CMOS process. Without time-modulation, the hardware is capable of 3-bits of resolution. The inherent digital nature of TM-LO architecture provides opportunity very compact front-ends suitable for large arrays and lower voltage technologies. Four TM-LO chips were used to create a beamforming receiver
本文介绍了一种时间调制 LO(TM-LO)矢量调制器(VM)架构,该架构采用时域方法对接收到的信号进行幅度缩放和相移。TM-LO 使用由数字合成块生成的轨至轨 LO 波形和通栅开关来执行振幅/相位控制。单元件接收器可在 360° 范围内实现 0.2 dB RMS 增益误差和 1.4° RMS 相位误差,振幅/相位分辨率为 5 位,采用 65 nm CMOS 工艺实现。在没有时间调制的情况下,硬件的分辨率为 3 位。TM-LO 架构固有的数字特性提供了非常紧凑的前端,适合大型阵列和低电压技术。四个 TM-LO 芯片用于创建波束成形接收器
{"title":"Time-Modulated-LO-Path Vector Modulators for Beamforming Receivers","authors":"Petar Barac;Matthew Bajor;Peter R. Kinget","doi":"10.1109/LSSC.2024.3478837","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3478837","url":null,"abstract":"A time-modulated LO (TM-LO) vector modulator (VM) architecture using a time domain approach for amplitude scaling and phase shifting received signals is presented. The TM-LO uses rail-to-rail LO waveforms generated from digitally synthesized blocks and pass-gate switches to perform the amplitude/phase control. A single element receiver achieves 0.2 dB RMS gain error and 1.4° RMS phase error with 5 bits of amplitude/phase resolution across a 360° range is implemented in a 65 nm CMOS process. Without time-modulation, the hardware is capable of 3-bits of resolution. The inherent digital nature of TM-LO architecture provides opportunity very compact front-ends suitable for large arrays and lower voltage technologies. Four TM-LO chips were used to create a beamforming receiver","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"323-326"},"PeriodicalIF":2.2,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142517990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 1–3 GHz Fast-Locking Frequency Synthesizer Based on a Combination of PLL and MDLL With Auto-Zero Phase-Error Compensation 基于 PLL 和 MDLL 组合的 1-3 GHz 快速锁定频率合成器,具有自动零相位误差补偿功能
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-10-11 DOI: 10.1109/LSSC.2024.3478799
Ching-Yuan Yang;Hao-Cheng Hsu;Ping-Heng Wu;Samuel Palermo
A fast-locking low-jitter hybrid frequency synthesizer using a charge-pump phase-locked loop (CP-PLL) and a multiplying delay-locked loop (MDLL) is presented. The CP-PLL uses a discriminator-aided detector (DAD) to alleviate the cycle-slipping issue and an auto-zero phase error compensator (AZ-PEC) to compensate the accumulated phase error during frequency acquisition to enhance the settling time. Then, the MDLL overcomes the jitter accumulation of CP-PLL. The synthesizer was fabricated in a 90-nm CMOS process. The output frequency ranges from 1 to 3 GHz. When switching from 1 to 2.5 GHz, the measured settling time using DAD and AZ-PEC is 520 ns, which is approximately 26 reference clock cycles. The power consumption is 12 mW at 2.5 GHz for a supply of 1.2 V. The integral root-mean-square jitter over 1 kHz–100 MHz is 1.62 ps.
本文介绍了一种使用电荷泵锁相环(CP-PLL)和乘法延迟锁相环(MDLL)的快速锁定低抖动混合频率合成器。CP-PLL 使用鉴相器辅助检测器 (DAD) 来缓解周期滑动问题,并使用自动归零相位误差补偿器 (AZ-PEC) 来补偿频率采集过程中的累积相位误差,以延长稳定时间。然后,MDLL 克服了 CP-PLL 的抖动累积问题。合成器采用 90 纳米 CMOS 工艺制造。输出频率范围为 1 至 3 GHz。当从 1 GHz 切换到 2.5 GHz 时,使用 DAD 和 AZ-PEC 测得的沉淀时间为 520 ns,约为 26 个参考时钟周期。1 kHz-100 MHz 的积分均方根抖动为 1.62 ps。
{"title":"A 1–3 GHz Fast-Locking Frequency Synthesizer Based on a Combination of PLL and MDLL With Auto-Zero Phase-Error Compensation","authors":"Ching-Yuan Yang;Hao-Cheng Hsu;Ping-Heng Wu;Samuel Palermo","doi":"10.1109/LSSC.2024.3478799","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3478799","url":null,"abstract":"A fast-locking low-jitter hybrid frequency synthesizer using a charge-pump phase-locked loop (CP-PLL) and a multiplying delay-locked loop (MDLL) is presented. The CP-PLL uses a discriminator-aided detector (DAD) to alleviate the cycle-slipping issue and an auto-zero phase error compensator (AZ-PEC) to compensate the accumulated phase error during frequency acquisition to enhance the settling time. Then, the MDLL overcomes the jitter accumulation of CP-PLL. The synthesizer was fabricated in a 90-nm CMOS process. The output frequency ranges from 1 to 3 GHz. When switching from 1 to 2.5 GHz, the measured settling time using DAD and AZ-PEC is 520 ns, which is approximately 26 reference clock cycles. The power consumption is 12 mW at 2.5 GHz for a supply of 1.2 V. The integral root-mean-square jitter over 1 kHz–100 MHz is 1.62 ps.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"315-318"},"PeriodicalIF":2.2,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142517989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Digital SRAM-Based Computing-in-Memory Macro Supporting Parallel Maintaining for Network Management 基于数字 SRAM 的计算内存宏,支持并行维护网络管理
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-10-10 DOI: 10.1109/LSSC.2024.3477619
Geng Li;Hanqing Zheng;Jiacong Sun;Hailong Jiao
A digital SRAM-based computing-in-memory (CIM) macro is proposed to enable parallel maintaining for statistics counters in network management. A new 18-transistor bit-cell is designed to support in-situ counter maintaining. A joint coding scheme and a daisy-chain circuit are leveraged to enhance the throughput as well as reduce the computing energy consumption and area. The proposed CIM macro saves $6.9times $ in energy at 1.2 V and $2.33times $ in area compared with the conventional statistics counters in a 55-nm CMOS technology.
为实现网络管理中统计计数器的并行维护,提出了一种基于数字 SRAM 的内存计算(CIM)宏。设计了一种新的 18 晶体管位元组,以支持原位计数器维护。利用联合编码方案和菊花链电路提高了吞吐量,并减少了计算能耗和面积。与采用 55 纳米 CMOS 技术的传统统计计数器相比,所提出的 CIM 宏在 1.2 V 电压下可节省 6.9 美元的能耗和 2.33 美元的面积。
{"title":"A Digital SRAM-Based Computing-in-Memory Macro Supporting Parallel Maintaining for Network Management","authors":"Geng Li;Hanqing Zheng;Jiacong Sun;Hailong Jiao","doi":"10.1109/LSSC.2024.3477619","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3477619","url":null,"abstract":"A digital SRAM-based computing-in-memory (CIM) macro is proposed to enable parallel maintaining for statistics counters in network management. A new 18-transistor bit-cell is designed to support in-situ counter maintaining. A joint coding scheme and a daisy-chain circuit are leveraged to enhance the throughput as well as reduce the computing energy consumption and area. The proposed CIM macro saves \u0000<inline-formula> <tex-math>$6.9times $ </tex-math></inline-formula>\u0000 in energy at 1.2 V and \u0000<inline-formula> <tex-math>$2.33times $ </tex-math></inline-formula>\u0000 in area compared with the conventional statistics counters in a 55-nm CMOS technology.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"327-330"},"PeriodicalIF":2.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An 8-nm 20-Gb/s/pin Single-Ended PAM-4 Transceiver With Pre/Post-Channel Switching Jitter Compensation and DQS-Driven Biasing 具有前/后通道切换抖动补偿和 DQS 驱动偏置功能的 8 纳米 20-Gb/s/pin 单端 PAM-4 收发器
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-10-10 DOI: 10.1109/LSSC.2024.3477736
Kyunghwan Min;Jahoon Jin;Soo-Min Lee;Sodam Ju;Jisu Yook;Jihoon Lee;Yunji Hong;Sung-Sik Park;Sang-Ho Kim;Jongwoo Lee;Hyungjong Ko
This letter presents a 20-Gb/s/pin single-ended pulse amplitude modulation (PAM)-4 transceiver implemented in an 8-nm CMOS process, featuring an advanced switching jitter compensation (SWJC) technique and a DQS-driven amplifier bias generation method for a source-synchronous clocking system, aimed for next-generation low-power memory interfaces utilizing multilevel signaling. The proposed prechannel SWJC (pre-SWJC) in the transmitter adjusts the input edge timing of the thermometer PAM-4 driver to control the transitions of the PAM-4 signal. This transition control advances the outermost transitions, thereby not only minimizing the switching jitter (SWJ) of the middle eye but also enhancing the effectiveness of the post-channel SWJC (post-SWJC) performed at the receiver. Ultimately, the comprehensive solution combining the proposed pre/post-SWJC improved the timing margin from 0.26 UI to 0.39 UI at a BER of 1e-12, with only a 4.5% increase in power consumption and a 0.59% area overhead. Additionally, the proposed DQS-driven biasing technique in the receiver supplies biases for the amplifiers in the data lanes by utilizing the common-mode feedback of the replica amplifier in the differential clock lane. This approach reduces variation sources compared to the self-biasing structure that uses common-mode feedback in the data lanes, thereby improving the standard deviation of the amplifier’s bias voltage and gain variation by 58.3%.
这封信介绍了一种在 8 纳米 CMOS 工艺中实现的 20-Gb/s/pin 单端脉冲幅度调制 (PAM)-4 收发器,该收发器采用先进的开关抖动补偿 (SWJC) 技术和 DQS 驱动的放大器偏置生成方法,用于源同步时钟系统,旨在实现利用多级信号的下一代低功耗存储器接口。拟议的发射器预通道 SWJC(pre-SWJC)可调整温度计 PAM-4 驱动器的输入边沿时序,以控制 PAM-4 信号的转换。这种过渡控制将最外层的过渡提前,从而不仅最大限度地减少了中间眼的开关抖动(SWJ),还提高了接收器执行的后信道 SWJC(post-SWJC)的有效性。最终,在误码率为 1e-12 的情况下,结合了所提出的前/后 SWJC 的综合解决方案将时序裕度从 0.26 UI 提高到了 0.39 UI,而功耗仅增加了 4.5%,面积开销为 0.59%。此外,接收器中的 DQS 驱动偏置技术利用差分时钟通道中复制放大器的共模反馈,为数据通道中的放大器提供偏置。与在数据通道中使用共模反馈的自偏压结构相比,这种方法减少了变化源,从而将放大器偏置电压和增益变化的标准偏差提高了 58.3%。
{"title":"An 8-nm 20-Gb/s/pin Single-Ended PAM-4 Transceiver With Pre/Post-Channel Switching Jitter Compensation and DQS-Driven Biasing","authors":"Kyunghwan Min;Jahoon Jin;Soo-Min Lee;Sodam Ju;Jisu Yook;Jihoon Lee;Yunji Hong;Sung-Sik Park;Sang-Ho Kim;Jongwoo Lee;Hyungjong Ko","doi":"10.1109/LSSC.2024.3477736","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3477736","url":null,"abstract":"This letter presents a 20-Gb/s/pin single-ended pulse amplitude modulation (PAM)-4 transceiver implemented in an 8-nm CMOS process, featuring an advanced switching jitter compensation (SWJC) technique and a DQS-driven amplifier bias generation method for a source-synchronous clocking system, aimed for next-generation low-power memory interfaces utilizing multilevel signaling. The proposed prechannel SWJC (pre-SWJC) in the transmitter adjusts the input edge timing of the thermometer PAM-4 driver to control the transitions of the PAM-4 signal. This transition control advances the outermost transitions, thereby not only minimizing the switching jitter (SWJ) of the middle eye but also enhancing the effectiveness of the post-channel SWJC (post-SWJC) performed at the receiver. Ultimately, the comprehensive solution combining the proposed pre/post-SWJC improved the timing margin from 0.26 UI to 0.39 UI at a BER of 1e-12, with only a 4.5% increase in power consumption and a 0.59% area overhead. Additionally, the proposed DQS-driven biasing technique in the receiver supplies biases for the amplifiers in the data lanes by utilizing the common-mode feedback of the replica amplifier in the differential clock lane. This approach reduces variation sources compared to the self-biasing structure that uses common-mode feedback in the data lanes, thereby improving the standard deviation of the amplifier’s bias voltage and gain variation by 58.3%.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"319-322"},"PeriodicalIF":2.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142517783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0.6-V, μW-Power Four-Stage OTA With Minimal Components, and 100× Load Range 0.6 V、μW 功率四级 OTA,元件最少,负载范围达 100 倍
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-10-08 DOI: 10.1109/LSSC.2024.3476194
Marco Privitera;Alfio Dario Grasso;Andrea Ballo;Massimo Alioto
A four-stage operational transconductance amplifier (OTA) for ultralow-power applications is introduced in this letter. The proposed circuit inclusive of frequency compensation requires minimal transistor count and passives, overcoming the traditionally difficult compensation of four-stage OTAs and bringing it back to the simplicity of three-stage OTAs. At the same time, the proposed circuit achieves high power efficiency, as evidenced by the > $3.7times $ (> $11.3times $ ) improvement in the large-signal (small-signal) power efficiency figure of merit ${mathrm { FOM}}_{L}~({mathrm { FOM}}_{S})$ , compared to prior four-stage OTAs (sub-1 V multistage OTAs). Thanks to the lower sensitivity of the phase margin to the load capacitance, the proposed OTA remains stable under a wide range of loads (double-sided as in any three- and four-stage OTA), achieving a max/min ratio of the load capacitance of > $100times $ .
本信介绍了一种用于超低功耗应用的四级运算跨导放大器(OTA)。所提出的电路包括频率补偿,只需最少的晶体管数量和无源器件,克服了四级 OTA 传统上难以补偿的问题,使其回归到三级 OTA 的简单性。同时,与之前的四级 OTA(1 V 以下的多级 OTA)相比,所提出的电路实现了较高的功率效率,其大信号(小信号)功率效率优值 ${mathrm { FOM}}_{L}~({mathrm { FOM}}_{S})$ 提高了 > 3.7 (> $11.3)倍。由于相位裕度对负载电容的敏感性较低,因此所提出的 OTA 在各种负载(与任何三级和四级 OTA 一样为双面负载)下都能保持稳定,负载电容的最大/最小比> $100times $。
{"title":"0.6-V, μW-Power Four-Stage OTA With Minimal Components, and 100× Load Range","authors":"Marco Privitera;Alfio Dario Grasso;Andrea Ballo;Massimo Alioto","doi":"10.1109/LSSC.2024.3476194","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3476194","url":null,"abstract":"A four-stage operational transconductance amplifier (OTA) for ultralow-power applications is introduced in this letter. The proposed circuit inclusive of frequency compensation requires minimal transistor count and passives, overcoming the traditionally difficult compensation of four-stage OTAs and bringing it back to the simplicity of three-stage OTAs. At the same time, the proposed circuit achieves high power efficiency, as evidenced by the >\u0000<inline-formula> <tex-math>$3.7times $ </tex-math></inline-formula>\u0000 (>\u0000<inline-formula> <tex-math>$11.3times $ </tex-math></inline-formula>\u0000) improvement in the large-signal (small-signal) power efficiency figure of merit \u0000<inline-formula> <tex-math>${mathrm { FOM}}_{L}~({mathrm { FOM}}_{S})$ </tex-math></inline-formula>\u0000, compared to prior four-stage OTAs (sub-1 V multistage OTAs). Thanks to the lower sensitivity of the phase margin to the load capacitance, the proposed OTA remains stable under a wide range of loads (double-sided as in any three- and four-stage OTA), achieving a max/min ratio of the load capacitance of >\u0000<inline-formula> <tex-math>$100times $ </tex-math></inline-formula>\u0000.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"311-314"},"PeriodicalIF":2.2,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Broadband GaN MMIC Doherty Power Amplifier Using Compact Short-Circuited Coupler 使用紧凑型短路耦合器的宽带 GaN MMIC Doherty 功率放大器
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-10-01 DOI: 10.1109/LSSC.2024.3471855
Shun Wan;Wenhua Chen;Guansheng Lv;Yuhang Zhang;Xu Shi;Zhenghe Feng
In this letter, a broadband gallium nitride (GaN) monolithic microwave integrated circuit Doherty power amplifier (DPA) using a compact short-circuited coupler (CSC) is presented. To enhance the bandwidth and reduce the size of integrated DPA, the conventional $lambda $ /2 transmission line in the peaking output matching network is replaced by the CSC structure. Detailed theoretical analysis and design procedures are provided. Based on the proposed solution, a 5.1–7.2-GHz DPA is designed using a 0.12- $mu $ m GaN HEMT process. The fractional bandwidth (FBW) is 34.1%. The measurement results show a saturated output power of 37.2–39 dBm and a 6-dB back-off drain efficiency of 38.4%–50.5% across the design bands with a chip size of $2.6times 2$ .6 mm. The adjacent channel power ratio (ACPR) under 100-MHz single-carrier 64 QAM modulation signal with a 6-dB peak-to-average power ratio (PAPR) excitation is better than −45 dBc with digital predistortion (DPD).
本文介绍了一种使用紧凑型短路耦合器(CSC)的宽带氮化镓(GaN)单片微波集成电路 Doherty 功率放大器(DPA)。为了提高带宽并减小集成 DPA 的尺寸,峰值输出匹配网络中的传统 $lambda $ /2 传输线被 CSC 结构所取代。本文提供了详细的理论分析和设计程序。根据所提出的解决方案,设计出了一种 5.1-7.2-GHz 的 DPA,采用的是 0.12- $mu $ m GaN HEMT 工艺。分数带宽(FBW)为 34.1%。测量结果显示,饱和输出功率为 37.2-39 dBm,整个设计频段的 6 dB 后关漏效率为 38.4%-50.5%,芯片尺寸为 2.6 美元乘 2.6 毫米。在 100 MHz 单载波 64 QAM 调制信号和 6 dB 峰均功率比 (PAPR) 激励下,邻道功率比 (ACPR) 优于数字预失真 (DPD) 下的 -45 dBc。
{"title":"Broadband GaN MMIC Doherty Power Amplifier Using Compact Short-Circuited Coupler","authors":"Shun Wan;Wenhua Chen;Guansheng Lv;Yuhang Zhang;Xu Shi;Zhenghe Feng","doi":"10.1109/LSSC.2024.3471855","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3471855","url":null,"abstract":"In this letter, a broadband gallium nitride (GaN) monolithic microwave integrated circuit Doherty power amplifier (DPA) using a compact short-circuited coupler (CSC) is presented. To enhance the bandwidth and reduce the size of integrated DPA, the conventional \u0000<inline-formula> <tex-math>$lambda $ </tex-math></inline-formula>\u0000/2 transmission line in the peaking output matching network is replaced by the CSC structure. Detailed theoretical analysis and design procedures are provided. Based on the proposed solution, a 5.1–7.2-GHz DPA is designed using a 0.12-\u0000<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>\u0000m GaN HEMT process. The fractional bandwidth (FBW) is 34.1%. The measurement results show a saturated output power of 37.2–39 dBm and a 6-dB back-off drain efficiency of 38.4%–50.5% across the design bands with a chip size of \u0000<inline-formula> <tex-math>$2.6times 2$ </tex-math></inline-formula>\u0000.6 mm. The adjacent channel power ratio (ACPR) under 100-MHz single-carrier 64 QAM modulation signal with a 6-dB peak-to-average power ratio (PAPR) excitation is better than −45 dBc with digital predistortion (DPD).","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"307-310"},"PeriodicalIF":2.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Solid-State Circuits Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1