首页 > 最新文献

IEEE Solid-State Circuits Letters最新文献

英文 中文
A 1.54 pJ/b 80 Gb/s D-Band 2-D Scalable Transceiver Array With On-Chip Antennas in 28-nm Bulk CMOS
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-02-05 DOI: 10.1109/LSSC.2025.3539228
Hesham Beshary;Yikuan Chen;Ethan Chou;Ali M. Niknejad
This work represents a 140 GHz wideband 2-D scalable phased array in 28-nm bulk CMOS technology. The chip integrates $2times 2$ transceiving elements with on-chip antennas and a $times 16$ LO multiplication chain in $2.115times 2$ .115 mm2. The elements are forming an RF beamformer while keeping approximately half-wavelength spacing between the elements. The integrated antennas leverage substrate thinning and substrate mode cancellation to boost the array radiation efficiency. The system adopts a superheterodyne transceiver (TRX) architecture with 25 GHz IF center frequency. The proposed work achieves 1.54 pJ/b and 80 Gb/s over-the-air (OTA) using 16-QAM modulation scheme for the overall transmit-receive link. To the best of the authors’ knowledge, this work achieves the highest reported array-level OTA data rate while improving the energy efficiency (pJ/b) by approximately an order of magnitude compared to other D-band transceiver arrays.
{"title":"A 1.54 pJ/b 80 Gb/s D-Band 2-D Scalable Transceiver Array With On-Chip Antennas in 28-nm Bulk CMOS","authors":"Hesham Beshary;Yikuan Chen;Ethan Chou;Ali M. Niknejad","doi":"10.1109/LSSC.2025.3539228","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3539228","url":null,"abstract":"This work represents a 140 GHz wideband 2-D scalable phased array in 28-nm bulk CMOS technology. The chip integrates <inline-formula> <tex-math>$2times 2$ </tex-math></inline-formula> transceiving elements with on-chip antennas and a <inline-formula> <tex-math>$times 16$ </tex-math></inline-formula> LO multiplication chain in <inline-formula> <tex-math>$2.115times 2$ </tex-math></inline-formula>.115 mm2. The elements are forming an RF beamformer while keeping approximately half-wavelength spacing between the elements. The integrated antennas leverage substrate thinning and substrate mode cancellation to boost the array radiation efficiency. The system adopts a superheterodyne transceiver (TRX) architecture with 25 GHz IF center frequency. The proposed work achieves 1.54 pJ/b and 80 Gb/s over-the-air (OTA) using 16-QAM modulation scheme for the overall transmit-receive link. To the best of the authors’ knowledge, this work achieves the highest reported array-level OTA data rate while improving the energy efficiency (pJ/b) by approximately an order of magnitude compared to other D-band transceiver arrays.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"61-64"},"PeriodicalIF":2.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 0.86 mW 17 fA/√Hz, 129-dB DR Current-Sensing Front-End for Under-Display Ambient Light Sensor With Zero-Compensated Logarithmic TIA
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-01-13 DOI: 10.1109/LSSC.2025.3528962
Liheng Liu;Tianxiang Qu;Hao Li;Dan Li;Gan Guo;Zhiliang Hong;Jiawei Xu
This letter presents a low-noise, power-efficient, and pulsatile-interference stabilized photocurrent readout circuit for under-display ambient light sensors (ALS). To achieve pA-level input noise and seven decades of input current dynamic range (DR) simultaneously, a logarithmic transimpedance amplifier (TIA) with a diode-connected MOS feedback is set as the first stage of the ALS. An auto-tracking zero, implemented in the amplifier of the TIA, improves the phase-margin and reduces the settling time against pulsatile interference without extra power consumption. The TIA output is then quantized by a first-order 9-bit incremental delta-sigma modulator. Fabricated in a standard 0.18- $mu $ m CMOS process, the proposed ALS achieves the best-in-the-class input-referred current noise of $0.6~rm {pA}_{mathrm {rms}}$ within a 400- $mu $ s readout time. The total input range of $1.7~rm {pA}_{mathrm {PP}}$ $5~mu rm {A}_{mathrm {PP}}$ corresponds to a DR of 129 dB while consuming 0.86 mW at a 1.8-V supply.
{"title":"A 0.86 mW 17 fA/√Hz, 129-dB DR Current-Sensing Front-End for Under-Display Ambient Light Sensor With Zero-Compensated Logarithmic TIA","authors":"Liheng Liu;Tianxiang Qu;Hao Li;Dan Li;Gan Guo;Zhiliang Hong;Jiawei Xu","doi":"10.1109/LSSC.2025.3528962","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3528962","url":null,"abstract":"This letter presents a low-noise, power-efficient, and pulsatile-interference stabilized photocurrent readout circuit for under-display ambient light sensors (ALS). To achieve pA-level input noise and seven decades of input current dynamic range (DR) simultaneously, a logarithmic transimpedance amplifier (TIA) with a diode-connected MOS feedback is set as the first stage of the ALS. An auto-tracking zero, implemented in the amplifier of the TIA, improves the phase-margin and reduces the settling time against pulsatile interference without extra power consumption. The TIA output is then quantized by a first-order 9-bit incremental delta-sigma modulator. Fabricated in a standard 0.18-<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>m CMOS process, the proposed ALS achieves the best-in-the-class input-referred current noise of <inline-formula> <tex-math>$0.6~rm {pA}_{mathrm {rms}}$ </tex-math></inline-formula> within a 400-<inline-formula> <tex-math>$mu $ </tex-math></inline-formula>s readout time. The total input range of <inline-formula> <tex-math>$1.7~rm {pA}_{mathrm {PP}}$ </tex-math></inline-formula>–<inline-formula> <tex-math>$5~mu rm {A}_{mathrm {PP}}$ </tex-math></inline-formula> corresponds to a DR of 129 dB while consuming 0.86 mW at a 1.8-V supply.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"49-52"},"PeriodicalIF":2.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
20–26-GHz CMOS PA With High Pout and OP1 dB Using a 1:2 Capacitance-Ratio-Equivalent Power Combiner
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-01-13 DOI: 10.1109/LSSC.2025.3529347
Jin-Fa Chang
We demonstrate a four-way wide-band power amplifier (PA1) with a 1:2 capacitance-ratio-equivalent power combiner (PC) and a dynamic-threshold-voltage MOSFET with a resistor (DTMOS-R) using a 90-nm CMOS. Another PA (PA2) without a DTMOS-R using low-loss micro-strip line inductors replaced with a PC is demonstrated for contrast. A low-loss PC is realized using equal $lambda $ /4 spiral transmission line inductors based on a $lambda $ /9 one (with a 1:2 capacitance ratio involving Cp1 and Cp2) for low-loss output-stage matching. The output power of the output stage of PA1, with low-threshold voltage ( $V_{mathrm { th}}$ ) due to the DTMOS-R and low Rds based on the parallel four-way output, is enhanced using a PC. Between 20–26 GHz, PA1 achieves a prominent S21 of 23.2 dB, peak power-added-efficiency (PAE) between 20.8%–29.7%, and saturation output power between 19.9–21.2 dBm. Moreover, the output 1-dB compression point (OP1dB) is 16–20.4 dBm between 20–26 GHz. Using the PC and DTMOS-R yields the bulk CMOS PA’s high performance (Pout, PAE, and OP1dB), comparable to recent state-of-the-art millimeter-wave PAs, i.e., SOI/SiGe processes.
{"title":"20–26-GHz CMOS PA With High Pout and OP1 dB Using a 1:2 Capacitance-Ratio-Equivalent Power Combiner","authors":"Jin-Fa Chang","doi":"10.1109/LSSC.2025.3529347","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3529347","url":null,"abstract":"We demonstrate a four-way wide-band power amplifier (PA1) with a 1:2 capacitance-ratio-equivalent power combiner (PC) and a dynamic-threshold-voltage MOSFET with a resistor (DTMOS-R) using a 90-nm CMOS. Another PA (PA2) without a DTMOS-R using low-loss micro-strip line inductors replaced with a PC is demonstrated for contrast. A low-loss PC is realized using equal <inline-formula> <tex-math>$lambda $ </tex-math></inline-formula>/4 spiral transmission line inductors based on a <inline-formula> <tex-math>$lambda $ </tex-math></inline-formula>/9 one (with a 1:2 capacitance ratio involving Cp1 and Cp2) for low-loss output-stage matching. The output power of the output stage of PA1, with low-threshold voltage (<inline-formula> <tex-math>$V_{mathrm { th}}$ </tex-math></inline-formula>) due to the DTMOS-R and low Rds based on the parallel four-way output, is enhanced using a PC. Between 20–26 GHz, PA1 achieves a prominent S21 of 23.2 dB, peak power-added-efficiency (PAE) between 20.8%–29.7%, and saturation output power between 19.9–21.2 dBm. Moreover, the output 1-dB compression point (OP1dB) is 16–20.4 dBm between 20–26 GHz. Using the PC and DTMOS-R yields the bulk CMOS PA’s high performance (Pout, PAE, and OP1dB), comparable to recent state-of-the-art millimeter-wave PAs, i.e., SOI/SiGe processes.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"53-56"},"PeriodicalIF":2.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 23–28-GHz Doherty Power Amplifier With a PVT Insensitive Power Detection for Adaptive Biasing
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-01-10 DOI: 10.1109/LSSC.2025.3528055
Yahia Ibrahim;Ali Niknejad
This letter presents a compact Doherty power amplifier (PA) featuring a single transformer balun. A novel envelope power detector architecture is introduced for high-bandwidth (BW) adaptive biasing, that is, insensitive to process-voltage–temperature (PVT) variations. The measured PA attains a saturated power $(mathbf {P_{mathrm { sat}}})$ exceeding 20.2 dBm and a power gain of 19.5 dB across the frequency range of 23–28 GHz. Moreover, it exhibits a peak power added efficiency (PAE) of 38% and a 6-dB power back-off (PBO) PAE of 27% at 25 GHz. The proposed adaptive biasing scheme enables a modulation BW of up to 800 MHz for a 64-QAM signal. Under this setting, the average output power $(mathbf {P_{avg}})$ is measured at 11.3 dBm with an RMS error vector magnitude (EVM) of −24.5 dB and an average PAE of 15.5%. The PA is fabricated in Global Foundries 45-nm-SOI technology with a compact area of 0.27 mm2. To the best of the authors’ knowledge, this work is the first to demonstrate robust performance for Doherty PAs across PVT variations.
{"title":"A 23–28-GHz Doherty Power Amplifier With a PVT Insensitive Power Detection for Adaptive Biasing","authors":"Yahia Ibrahim;Ali Niknejad","doi":"10.1109/LSSC.2025.3528055","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3528055","url":null,"abstract":"This letter presents a compact Doherty power amplifier (PA) featuring a single transformer balun. A novel envelope power detector architecture is introduced for high-bandwidth (BW) adaptive biasing, that is, insensitive to process-voltage–temperature (PVT) variations. The measured PA attains a saturated power <inline-formula> <tex-math>$(mathbf {P_{mathrm { sat}}})$ </tex-math></inline-formula> exceeding 20.2 dBm and a power gain of 19.5 dB across the frequency range of 23–28 GHz. Moreover, it exhibits a peak power added efficiency (PAE) of 38% and a 6-dB power back-off (PBO) PAE of 27% at 25 GHz. The proposed adaptive biasing scheme enables a modulation BW of up to 800 MHz for a 64-QAM signal. Under this setting, the average output power <inline-formula> <tex-math>$(mathbf {P_{avg}})$ </tex-math></inline-formula> is measured at 11.3 dBm with an RMS error vector magnitude (EVM) of −24.5 dB and an average PAE of 15.5%. The PA is fabricated in Global Foundries 45-nm-SOI technology with a compact area of 0.27 mm2. To the best of the authors’ knowledge, this work is the first to demonstrate robust performance for Doherty PAs across PVT variations.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"41-44"},"PeriodicalIF":2.2,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Low-Jitter Fractional-N LC-PLL With a 1/4 DTC-Range-Reduction Technique
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-01-10 DOI: 10.1109/LSSC.2025.3528005
Gaofeng Jin;Fei Feng;Yan Chen;Hanli Liu;Xiang Gao
A fractional-N LC oscillator-based phase-locked loop (PLL) with a 1/4 quantization noise (QN) range reduction technique is proposed. Simple open-loop delay cells are used to generate 4-phase clocks and reduce the QN by a factor of 4 while the mismatches of the four phases are calibrated and covered by a single DTC. Designed in 40-nm CMOS process, the proposed PLL achieves 159-fs RMS-jitter with 2.6-mW power consumption, leading to –251.8-dB FoM.
{"title":"A Low-Jitter Fractional-N LC-PLL With a 1/4 DTC-Range-Reduction Technique","authors":"Gaofeng Jin;Fei Feng;Yan Chen;Hanli Liu;Xiang Gao","doi":"10.1109/LSSC.2025.3528005","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3528005","url":null,"abstract":"A fractional-N LC oscillator-based phase-locked loop (PLL) with a 1/4 quantization noise (QN) range reduction technique is proposed. Simple open-loop delay cells are used to generate 4-phase clocks and reduce the QN by a factor of 4 while the mismatches of the four phases are calibrated and covered by a single DTC. Designed in 40-nm CMOS process, the proposed PLL achieves 159-fs RMS-jitter with 2.6-mW power consumption, leading to –251.8-dB FoM.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"45-48"},"PeriodicalIF":2.2,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Sub-THz Harmonic Recycling Single-Stage Frequency Quadrupler in CMOS 28-nm Technology
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-01-09 DOI: 10.1109/LSSC.2025.3527533
Ali Ameri;Ali M. Niknejad
A single-stage frequency quadrupler operating in the 199–219-GHz frequency range is presented. The quadrupler utilizes a second harmonic trap and recycles the trapped power to generate additional power toward the desired fourth harmonic. The quadrupler has a peak power of −2.54 dBm while consuming 54 mW, resulting in a maximum efficiency $eta _{mathrm {MAX}}=1.03%$ . The circuit occupies an area of $370~mu $ m $times $ $240~mu $ m, the smallest footprint among the reported sub-THz frequency quadruplers. An on-chip LC oscillator and a tuned buffer provide the input signal to the quadrupler, constituting a fully integrated system.
{"title":"A Sub-THz Harmonic Recycling Single-Stage Frequency Quadrupler in CMOS 28-nm Technology","authors":"Ali Ameri;Ali M. Niknejad","doi":"10.1109/LSSC.2025.3527533","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3527533","url":null,"abstract":"A single-stage frequency quadrupler operating in the 199–219-GHz frequency range is presented. The quadrupler utilizes a second harmonic trap and recycles the trapped power to generate additional power toward the desired fourth harmonic. The quadrupler has a peak power of −2.54 dBm while consuming 54 mW, resulting in a maximum efficiency <inline-formula> <tex-math>$eta _{mathrm {MAX}}=1.03%$ </tex-math></inline-formula>. The circuit occupies an area of <inline-formula> <tex-math>$370~mu $ </tex-math></inline-formula>m <inline-formula> <tex-math>$times $ </tex-math></inline-formula> <inline-formula> <tex-math>$240~mu $ </tex-math></inline-formula>m, the smallest footprint among the reported sub-THz frequency quadruplers. An on-chip LC oscillator and a tuned buffer provide the input signal to the quadrupler, constituting a fully integrated system.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"37-40"},"PeriodicalIF":2.2,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 65-nm Delta-Sigma ADC-Based VDD-Variation-Tolerant Power-Side-Channel-Attack Sensor
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-01-08 DOI: 10.1109/LSSC.2025.3527153
Shota Konno;Zachary J. Ellis;Anupam Golder;Sigang Ryu;Daniel Dinu;Avinash Varna;Sanu Mathew;Arijit Raychowdhury
This letter describes a delta-sigma ADC-based power-side-channel-attack sensor. Use of 64 sampling capacitors allows the use of over-sampling architecture even with a decoupling capacitor connected to the power supply. The LDO with low-leakage S/H is used as a driver for the integrator’s amplifier to minimize the offset error. A differential conversion method utilizing dual-integrate capacitors (CAPs) provides signal processing to compensate for drift due to supply voltage (VDD) variations. The prototype sensor chip fabricated in 65-nm CMOS has a worst-case detection accuracy of 98.7%, including VDD variations, for an insertion resistance > ${=}0.25~Omega $ and a power consumption of $50~mu $ W at 1.0-V operation.
{"title":"A 65-nm Delta-Sigma ADC-Based VDD-Variation-Tolerant Power-Side-Channel-Attack Sensor","authors":"Shota Konno;Zachary J. Ellis;Anupam Golder;Sigang Ryu;Daniel Dinu;Avinash Varna;Sanu Mathew;Arijit Raychowdhury","doi":"10.1109/LSSC.2025.3527153","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3527153","url":null,"abstract":"This letter describes a delta-sigma ADC-based power-side-channel-attack sensor. Use of 64 sampling capacitors allows the use of over-sampling architecture even with a decoupling capacitor connected to the power supply. The LDO with low-leakage S/H is used as a driver for the integrator’s amplifier to minimize the offset error. A differential conversion method utilizing dual-integrate capacitors (CAPs) provides signal processing to compensate for drift due to supply voltage (VDD) variations. The prototype sensor chip fabricated in 65-nm CMOS has a worst-case detection accuracy of 98.7%, including VDD variations, for an insertion resistance ><inline-formula> <tex-math>${=}0.25~Omega $ </tex-math></inline-formula> and a power consumption of <inline-formula> <tex-math>$50~mu $ </tex-math></inline-formula>W at 1.0-V operation.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"57-60"},"PeriodicalIF":2.2,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143422849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 1.1-pJ/b/Lane, 1.8-Tb/s Chiplet Using 113-Gb/s PAM-4 Transceiver With Equalization Strategy to Reduce Fractionally Spaced 0.5-UI ISI in 5-nm CMOS
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2025-01-06 DOI: 10.1109/LSSC.2025.3526877
G. Gangasani;A. Mostafa;A. Singh;D. Storaska;D. Prabakaran;K. Mohammad;M. Baecher;M. Shannon;M. Sorna;M. Wielgos;P. Jenkins;P. Ramakrishna;U. Shukla
This letter uses 113-Gb/s PAM4 transceiver in 5-nm CMOS to demonstrate a 1.8-Tb/s chiplet, over die-to-die extremely short-reach (XSR) intrapackage links, in an 8-port configuration. The 16-channels range from 1 to 12 dB of loss at $F_{textrm {baud}}/2$ . The chiplet performance over these channels is better than $textrm {BER}lt 10^{-9}$ , while consuming <1.1-pJ/b power and 0.22-mm2 area per lane. The performance targets are achieved using an transceiver equalization strategy which minimizes 0.5-UI ISI by design in the data path and using a LUT-based TX FFE-3 for signal equalization and envelope adaptation.
{"title":"A 1.1-pJ/b/Lane, 1.8-Tb/s Chiplet Using 113-Gb/s PAM-4 Transceiver With Equalization Strategy to Reduce Fractionally Spaced 0.5-UI ISI in 5-nm CMOS","authors":"G. Gangasani;A. Mostafa;A. Singh;D. Storaska;D. Prabakaran;K. Mohammad;M. Baecher;M. Shannon;M. Sorna;M. Wielgos;P. Jenkins;P. Ramakrishna;U. Shukla","doi":"10.1109/LSSC.2025.3526877","DOIUrl":"https://doi.org/10.1109/LSSC.2025.3526877","url":null,"abstract":"This letter uses 113-Gb/s PAM4 transceiver in 5-nm CMOS to demonstrate a 1.8-Tb/s chiplet, over die-to-die extremely short-reach (XSR) intrapackage links, in an 8-port configuration. The 16-channels range from 1 to 12 dB of loss at <inline-formula> <tex-math>$F_{textrm {baud}}/2$ </tex-math></inline-formula>. The chiplet performance over these channels is better than <inline-formula> <tex-math>$textrm {BER}lt 10^{-9}$ </tex-math></inline-formula>, while consuming <1.1-pJ/b power and 0.22-mm2 area per lane. The performance targets are achieved using an transceiver equalization strategy which minimizes 0.5-UI ISI by design in the data path and using a LUT-based TX FFE-3 for signal equalization and envelope adaptation.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"33-36"},"PeriodicalIF":2.2,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 2.6-GS/s 8-bit Time-Interleaved ADC With Fully Dynamic Current Integrating Sampler 具有全动态电流积分采样器的2.6-GS/s 8位时间交错ADC
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-12-27 DOI: 10.1109/LSSC.2024.3523509
Dengquan Li;Maowen Qian;Depan Li;Hongzhi Liang;Zhangming Zhu
This letter presents an 8-bit 2.6-GS/s 8-way time-interleaved (TI) analog-to-digital converter (ADC) in 65-nm CMOS. The proposed dynamic current integrating sampler (DCIS) implements the functionality of input buffer and anti-aliasing filter, and eliminates the memory effect caused by parasitic capacitance. It breaks through the limitations of conventional CIS in terms of power consumption, output swing, and bandwidth. A global master sampling network with charge sharing is adopted to alleviate the impact of timing skew. The measured results show that the TI-ADC achieves an SFDR of 50.01 dB and SNDR of 41.29 dB with Nyquist input, respectively. The total power consumption is 28.88 mW, which corresponds to a Walden figure of merit of 117.2 fJ/conv.-step.
本文介绍了一种采用65nm CMOS的8位2.6 gs /s 8路时间交错(TI)模数转换器(ADC)。所提出的动态电流积分采样器(DCIS)实现了输入缓冲和抗混叠滤波器的功能,并消除了寄生电容引起的记忆效应。突破了传统CIS在功耗、输出摆幅、带宽等方面的限制。采用了一种电荷共享的全局主采样网络,减轻了时间倾斜的影响。实测结果表明,在Nyquist输入下,TI-ADC的SFDR和SNDR分别达到50.01 dB和41.29 dB。总功耗为28.88 mW,相当于瓦尔登值为117.2 fJ/ v.-step。
{"title":"A 2.6-GS/s 8-bit Time-Interleaved ADC With Fully Dynamic Current Integrating Sampler","authors":"Dengquan Li;Maowen Qian;Depan Li;Hongzhi Liang;Zhangming Zhu","doi":"10.1109/LSSC.2024.3523509","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3523509","url":null,"abstract":"This letter presents an 8-bit 2.6-GS/s 8-way time-interleaved (TI) analog-to-digital converter (ADC) in 65-nm CMOS. The proposed dynamic current integrating sampler (DCIS) implements the functionality of input buffer and anti-aliasing filter, and eliminates the memory effect caused by parasitic capacitance. It breaks through the limitations of conventional CIS in terms of power consumption, output swing, and bandwidth. A global master sampling network with charge sharing is adopted to alleviate the impact of timing skew. The measured results show that the TI-ADC achieves an SFDR of 50.01 dB and SNDR of 41.29 dB with Nyquist input, respectively. The total power consumption is 28.88 mW, which corresponds to a Walden figure of merit of 117.2 fJ/conv.-step.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"29-32"},"PeriodicalIF":2.2,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142993085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A 1.48-fs FoM Analog Capacitorless-LDO With Cascade-Inverter-Based Pseudo-Power Transistor 基于级联逆变器的1.48 fm模拟无电容ldo
IF 2.2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Pub Date : 2024-12-25 DOI: 10.1109/LSSC.2024.3522785
Hing Tai Chen;Xun Liu;Ka Nang Leung
A capacitorless analog low-dropout regulator (CL-LDO) with cascade-inverter-based pseudo-power transistor is presented in this letter. The proposed architecture supports ultralow-voltage operation, fast transient response, high current efficiency, and high loop gain with low quiescent current along the full load range. The proposed CL-LDO can be easily implemented without any external transient-enhancement circuit. The circuit is fabricated in a 65-nm LP CMOS process with an active area of 0.00782 mm2. The minimum supply voltage can be as low as 0.5 V. The minimum dropout voltage is 20 mV. Under a 1-V supply, the undershoot voltage with 100-mV dropout voltage is 87 mV and settles down within 10 ns when the load current increases from $100~boldsymbol {mu }$ A to 50 mA within 5-ns edge time. The measured quiescent current is $4~boldsymbol {mu }$ A. The transient figure of merit is 1.48 fs.
本文介绍了一种基于级联逆变器的伪功率晶体管的无电容模拟低压差稳压器(CL-LDO)。该架构支持超低电压工作、快速瞬态响应、高电流效率以及在全负载范围内具有低静态电流的高环路增益。所提出的CL-LDO无需任何外部瞬态增强电路即可轻松实现。该电路采用65纳米LP CMOS工艺制造,有效面积为0.00782 mm2。最小供电电压可低至0.5 V。最小压降电压为20mv。在1 v电源下,当负载电流从$100~boldsymbol {mu}$ a在5ns边缘时间内增加到50 mA时,降压为100 mV的欠冲电压为87 mV,在10ns内稳定下来。测量到的静态电流为$4~boldsymbol {mu}$ a,暂态优值为1.48 fs。
{"title":"A 1.48-fs FoM Analog Capacitorless-LDO With Cascade-Inverter-Based Pseudo-Power Transistor","authors":"Hing Tai Chen;Xun Liu;Ka Nang Leung","doi":"10.1109/LSSC.2024.3522785","DOIUrl":"https://doi.org/10.1109/LSSC.2024.3522785","url":null,"abstract":"A capacitorless analog low-dropout regulator (CL-LDO) with cascade-inverter-based pseudo-power transistor is presented in this letter. The proposed architecture supports ultralow-voltage operation, fast transient response, high current efficiency, and high loop gain with low quiescent current along the full load range. The proposed CL-LDO can be easily implemented without any external transient-enhancement circuit. The circuit is fabricated in a 65-nm LP CMOS process with an active area of 0.00782 mm2. The minimum supply voltage can be as low as 0.5 V. The minimum dropout voltage is 20 mV. Under a 1-V supply, the undershoot voltage with 100-mV dropout voltage is 87 mV and settles down within 10 ns when the load current increases from \u0000<inline-formula> <tex-math>$100~boldsymbol {mu }$ </tex-math></inline-formula>\u0000 A to 50 mA within 5-ns edge time. The measured quiescent current is \u0000<inline-formula> <tex-math>$4~boldsymbol {mu }$ </tex-math></inline-formula>\u0000 A. The transient figure of merit is 1.48 fs.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"25-28"},"PeriodicalIF":2.2,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142937889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Solid-State Circuits Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1