The Effect of Organ Temperature on Total Yield of Transplanted and Direct-Seeded Rice (Oryza sativa L.)

IF 1.2 4区 生物学 Q3 PLANT SCIENCES Phyton-international Journal of Experimental Botany Pub Date : 2023-01-01 DOI:10.32604/phyton.2023.030627
Ziwei Li, Lifen Huang, Zhongyang Huo, Min Jiang
{"title":"The Effect of Organ Temperature on Total Yield of Transplanted and Direct-Seeded Rice (Oryza sativa L.)","authors":"Ziwei Li, Lifen Huang, Zhongyang Huo, Min Jiang","doi":"10.32604/phyton.2023.030627","DOIUrl":null,"url":null,"abstract":"The canopy temperature of rice is an important index that directly reflects the growth and physiological state of rice, and affects the yield of rice plants to a great extent. The correlation between the temperatures of different rice organs and canopy in different growth stages and the grain yield is complex. The stability and universality of these correlations must be verified. We conducted a pot experiment using two rice varieties and two temperature treatments (high temperature treatment was carried out at the beginning of heading stage for 10 days). We measured rice organ temperature during seven stages of growth using a high-precision infrared thermal imager. Results showed that the optimal observation period for the rice canopy temperature was 13:00. Although the rice variety did not significantly impact the canopy or organ temperature (<i>p > <i>0.05</i></i>), the different organs and canopy exhibited significantly different temperatures (<i>p < <i>0.05</i></i>). The correlations between the leaf, stem, panicle, canopy–air temperature differences and seed setting rate, theoretical and actual yields were the strongest during the milk stage. Among them, the correlation coefficient between ΔT<sub>s</sub> and theoretical and actual yields was the highest, the relationship between theoretical yield (Y) and ΔT<sub>s</sub> (X) was Y = −5.6965X + 27.778, R<sup>2</sup> = 0.9155. Compared with ΔT<sub>l</sub>, ΔT<sub>p</sub> and ΔT<sub>c</sub>, ΔT<sub>s</sub> was closely related to the main traits of plants. ΔT<sub>s</sub> could better reflect the growth characteristics of rice than ΔT<sub>c</sub>, such as dry matter accumulation (r = −0.931), SPAD (r = 0.699), N concentration (r = 0.714), transpiration rate (r = −0.722). In conclusion, stem temperature was more important indicator than canopy temperature. Stem temperature is a better screening index for rice breeding and cultivation management in the future.","PeriodicalId":20184,"journal":{"name":"Phyton-international Journal of Experimental Botany","volume":"154 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phyton-international Journal of Experimental Botany","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32604/phyton.2023.030627","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The canopy temperature of rice is an important index that directly reflects the growth and physiological state of rice, and affects the yield of rice plants to a great extent. The correlation between the temperatures of different rice organs and canopy in different growth stages and the grain yield is complex. The stability and universality of these correlations must be verified. We conducted a pot experiment using two rice varieties and two temperature treatments (high temperature treatment was carried out at the beginning of heading stage for 10 days). We measured rice organ temperature during seven stages of growth using a high-precision infrared thermal imager. Results showed that the optimal observation period for the rice canopy temperature was 13:00. Although the rice variety did not significantly impact the canopy or organ temperature (p > 0.05), the different organs and canopy exhibited significantly different temperatures (p < 0.05). The correlations between the leaf, stem, panicle, canopy–air temperature differences and seed setting rate, theoretical and actual yields were the strongest during the milk stage. Among them, the correlation coefficient between ΔTs and theoretical and actual yields was the highest, the relationship between theoretical yield (Y) and ΔTs (X) was Y = −5.6965X + 27.778, R2 = 0.9155. Compared with ΔTl, ΔTp and ΔTc, ΔTs was closely related to the main traits of plants. ΔTs could better reflect the growth characteristics of rice than ΔTc, such as dry matter accumulation (r = −0.931), SPAD (r = 0.699), N concentration (r = 0.714), transpiration rate (r = −0.722). In conclusion, stem temperature was more important indicator than canopy temperature. Stem temperature is a better screening index for rice breeding and cultivation management in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
器官温度对插秧和直播水稻总产的影响
水稻冠层温度是直接反映水稻生长和生理状态的重要指标,在很大程度上影响着水稻植株的产量。不同生育期水稻各器官温度和冠层温度与籽粒产量的关系是复杂的。这些相互关系的稳定性和普遍性必须得到证实。采用2个水稻品种和2个温度处理(抽穗期初高温处理10 d)进行盆栽试验。我们使用高精度红外热像仪测量了水稻生长七个阶段的器官温度。结果表明:水稻冠层温度的最佳观测时段为13:00;水稻品种对冠层和器官温度的影响不显著(p > 0.05),但不同器官和冠层的温度差异显著(p < 0.05)。乳期叶、茎、穗、冠空温差与结实率、理论产量和实际产量的相关性最强。其中ΔTs与理论产量和实际产量的相关系数最高,理论产量(Y)与ΔTs (X)的关系为Y =−5.6965X + 27.778, R2 = 0.9155。与ΔTl、ΔTp和ΔTc相比,ΔTs与植物的主要性状关系密切。ΔTs比ΔTc更能反映水稻的生长特征,如干物质积累(r =−0.931)、SPAD (r = 0.699)、N浓度(r = 0.714)、蒸腾速率(r =−0.722)等。综上所述,茎温是比冠层温度更重要的指标。茎温是今后水稻育种和栽培管理较好的筛选指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
11.80%
发文量
17
审稿时长
12 months
期刊介绍: Phyton-International Journal of Experimental Botany is an international journal that publishes on the broadest aspects of plant biology and ecology. The journal welcomes the original and exciting submissions that provide new and fundamental insights into the origins, development, and function of plants from the molecular to the whole organism and its interactions within the biotic and abiotic environment. Phyton-International Journal of Experimental Botany publishes outstanding research in the plant and ecology sciences, especially in the areas of plant physiology and biochemistry, plant metabolism, plant ecology and evolution, as well as those making use of synthetic, modeling, bioinformatics, and -omics tools. Manuscripts submitted to this journal must not be under simultaneous consideration or have been published elsewhere, either in part or in whole.
期刊最新文献
Combining Transcriptomics and Metabolomics to Uncover the Effects of High-Energy Lithium-Ion Beam Irradiation on Capsicum annuum L. Transcriptome Analysis of Molecular Mechanisms Underlying Phenotypic Variation in Phaseolus vulgaris Mutant ‘nts’ Ectopic Overexpression of EuCHIT30.7 Improves Nicotiana tabacum Resistance to Powdery Mildew Characterization of Endophytic Microorganisms of Rice (Oryza sativa L.) Potentials for Blast Disease Biocontrol and Plant Growth Promoting Agents Effect of Algae on Melon (Cucumis melo subsp. agrestis var. conomon) Growth and Development under Drought-Stress Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1