David Bassir, Hugo Lodge, Haochen Chang, Jüri Majak, Gongfa Chen
{"title":"Application of artificial intelligence and machine learning for BIM: review","authors":"David Bassir, Hugo Lodge, Haochen Chang, Jüri Majak, Gongfa Chen","doi":"10.1051/smdo/2023005","DOIUrl":null,"url":null,"abstract":"Quality control is very important aspect in Building Information Modelling (BIM) workflows. Whatever stage of the lifecycle it is important to get and to follow building indicators. The BIM it is very data consuming field and analysis of these data require advance numerical tools from image processing to big data analysis. Artificial intelligent (AI) and machine learning (ML) had proven their efficiency to deal with automate processes and extract useful sources of data in different industries. In addition to the indicators tracking, AI and ML can make a good prediction about when and where to provide maintenance and/or quality control. In this article, a review of the AI and ML application in BIM will be presented. Further suggestions and challenges will be also discussed. The aim is to provide knowledge on the needs nowadays into building and landscaping domain, and to give a wide understanding on how those technics would impact industries and future studies.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2023005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
Quality control is very important aspect in Building Information Modelling (BIM) workflows. Whatever stage of the lifecycle it is important to get and to follow building indicators. The BIM it is very data consuming field and analysis of these data require advance numerical tools from image processing to big data analysis. Artificial intelligent (AI) and machine learning (ML) had proven their efficiency to deal with automate processes and extract useful sources of data in different industries. In addition to the indicators tracking, AI and ML can make a good prediction about when and where to provide maintenance and/or quality control. In this article, a review of the AI and ML application in BIM will be presented. Further suggestions and challenges will be also discussed. The aim is to provide knowledge on the needs nowadays into building and landscaping domain, and to give a wide understanding on how those technics would impact industries and future studies.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).