{"title":"Global structures from the infrared","authors":"Michele Del Zotto, Iñaki García Etxebarria","doi":"10.1007/jhep11(2023)058","DOIUrl":null,"url":null,"abstract":"A bstract Quantum field theories with identical local dynamics can admit different choices of global structure, leading to different partition functions and spectra of extended operators. Such choices can be reformulated in terms of a topological field theory in one dimension higher, the symmetry TFT. In this paper we show that this TFT can be reconstructed from a careful analysis of the infrared Coulomb-like phases. In particular, the TFT matches between the UV and the IR. This provides a purely field theoretical counterpart of several recent results obtained via geometric engineering in various string/M/F theory setups for theories in four and five dimensions that we confirm and extend.","PeriodicalId":48906,"journal":{"name":"Journal of High Energy Physics","volume":" 959","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/jhep11(2023)058","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 19
Abstract
A bstract Quantum field theories with identical local dynamics can admit different choices of global structure, leading to different partition functions and spectra of extended operators. Such choices can be reformulated in terms of a topological field theory in one dimension higher, the symmetry TFT. In this paper we show that this TFT can be reconstructed from a careful analysis of the infrared Coulomb-like phases. In particular, the TFT matches between the UV and the IR. This provides a purely field theoretical counterpart of several recent results obtained via geometric engineering in various string/M/F theory setups for theories in four and five dimensions that we confirm and extend.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).