Analysis of Drying Front Propagation and Coupled Heat and Mass Transfer During Evaporation From Additively-Manufactured Porous Structures Under a Solar Flux

IF 2.8 4区 工程技术 Q2 ENGINEERING, MECHANICAL Journal of Heat Transfer-transactions of The Asme Pub Date : 2023-11-09 DOI:10.1115/1.4063766
Partha P. Chakraborty, Melanie Derby
{"title":"Analysis of Drying Front Propagation and Coupled Heat and Mass Transfer During Evaporation From Additively-Manufactured Porous Structures Under a Solar Flux","authors":"Partha P. Chakraborty, Melanie Derby","doi":"10.1115/1.4063766","DOIUrl":null,"url":null,"abstract":"Abstract Drying front propagation and coupled heat and mass transfer analysis from porous media is critical for soil–water dynamics, electronics cooling, and evaporative drying. In this study, de-ionized water was evaporated from three 3D printed porous structures (with 0.41 mm, 0.41 mm, and 0.16 mm effective radii, respectively) created out of acrylonitrile butadiene styrene (ABS) plastic using stereolithography technology. The structures were immersed in water until all the pores were invaded and then placed on the top of a sensitive scale to record evaporative mass loss. A 1000 W/m2 heat flux was applied with a solar simulator to the top of each structure to accelerate evaporation. The evaporative mass losses were recorded at 15 min time intervals and plotted against time to compare evaporation rates from the three structures. The evaporation phenomena were captured with a high-speed camera from the side of the structures to observe the drying front propagation during evaporation, and a high-resolution thermal camera was used to capture images to visualize the thermal gradients during evaporation. The 3D-structure with the smallest effective pore radius (i.e., 0.16 mm) experienced the sharpest decrease in the mass loss as the water evaporated from 0.8 g to 0.1 g within 180 min. The designed pore structures influenced hydraulic linkages, and therefore, evaporation processes. A coupled heat-and-mass-transfer model modeled constant rate evaporation, and the falling rate period was modeled through the normalized evaporation rate.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":" 90","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063766","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Drying front propagation and coupled heat and mass transfer analysis from porous media is critical for soil–water dynamics, electronics cooling, and evaporative drying. In this study, de-ionized water was evaporated from three 3D printed porous structures (with 0.41 mm, 0.41 mm, and 0.16 mm effective radii, respectively) created out of acrylonitrile butadiene styrene (ABS) plastic using stereolithography technology. The structures were immersed in water until all the pores were invaded and then placed on the top of a sensitive scale to record evaporative mass loss. A 1000 W/m2 heat flux was applied with a solar simulator to the top of each structure to accelerate evaporation. The evaporative mass losses were recorded at 15 min time intervals and plotted against time to compare evaporation rates from the three structures. The evaporation phenomena were captured with a high-speed camera from the side of the structures to observe the drying front propagation during evaporation, and a high-resolution thermal camera was used to capture images to visualize the thermal gradients during evaporation. The 3D-structure with the smallest effective pore radius (i.e., 0.16 mm) experienced the sharpest decrease in the mass loss as the water evaporated from 0.8 g to 0.1 g within 180 min. The designed pore structures influenced hydraulic linkages, and therefore, evaporation processes. A coupled heat-and-mass-transfer model modeled constant rate evaporation, and the falling rate period was modeled through the normalized evaporation rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳通量作用下可加制多孔结构蒸发过程中干燥锋传播及传热传质耦合分析
多孔介质中干燥锋的传播和耦合传热传质分析对土壤-水动力学、电子冷却和蒸发干燥至关重要。在这项研究中,用立体光刻技术从丙烯腈-丁二烯-苯乙烯(ABS)塑料制成的三个3D打印多孔结构(有效半径分别为0.41 mm、0.41 mm和0.16 mm)中蒸发去离子水。这些结构被浸入水中,直到所有的孔隙都被侵入,然后被放置在一个敏感的尺度上,以记录蒸发质量损失。每个结构的顶部都安装了一个太阳能模拟器,以加速蒸发,热流密度为1000 W/m2。每隔15分钟记录蒸发质量损失,并绘制时间图以比较三种结构的蒸发速率。利用高速摄像机从结构侧面拍摄蒸发现象,观察蒸发过程中干燥锋的传播;利用高分辨率热像仪拍摄蒸发过程中的热梯度图像。有效孔隙半径最小(0.16 mm)的3d结构在180分钟内水分从0.8 g蒸发到0.1 g,质量损失下降幅度最大。所设计的孔隙结构影响了水力连接,从而影响了蒸发过程。传热传质耦合模型模拟恒定速率蒸发,并通过归一化蒸发速率模拟下降速率周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
182
审稿时长
4.7 months
期刊介绍: Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.
期刊最新文献
Thermal Resistance Of Heated Superhydrophobic Channels with Streamwise Thermocapillary Stress Analysis of Drying Front Propagation and Coupled Heat and Mass Transfer During Evaporation From Additively-Manufactured Porous Structures Under a Solar Flux Significant Enhancement of Near-Field Radiative Heat Transfer by Misaligned Bilayer Heterostructure of Graphene-Covered Gratings Influence of Buoyancy and Inter-Surface Radiation on Confined Jet Impingement Cooling of a Semi-Cylindrical Concave Plate Significance of Upstream Wall Conditions in Characterizing the Heat Transfer Phenomena of Rarefied Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1