{"title":"User orientation and position-based transmission characteristics analysis of a LiFi system","authors":"M. Shariful Islam, Mobasshir Mahbub, Bobby Barua","doi":"10.1515/joc-2023-0260","DOIUrl":null,"url":null,"abstract":"Abstract The objective of the work is to analyze the downlink signal-to-interference-plus-noise ratio (SINR), transmission rate, bit error rate (BER), and average BER in terms of the irradiance angle of the receiver’s orientation and incident light and transmitter-to-receiver separation distance. The research considered two Light Fidelity (LiFi) access points (APs) for this analysis in a smart classroom context. The work derived the best favorable irradiance angle in terms of transmitter–receiver separation at which user devices achieve the highest SINR and transmission rate considering both two-dimensional (2D) and three-dimensional (3D) coverage areas. Moreover, the work analyzed SINR-based BER and average BER for the same communication scenario. The research derived that 47° to 50° irradiance angles of the receiver’s orientation and incident light offer the most favorable performance.","PeriodicalId":16675,"journal":{"name":"Journal of Optical Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/joc-2023-0260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The objective of the work is to analyze the downlink signal-to-interference-plus-noise ratio (SINR), transmission rate, bit error rate (BER), and average BER in terms of the irradiance angle of the receiver’s orientation and incident light and transmitter-to-receiver separation distance. The research considered two Light Fidelity (LiFi) access points (APs) for this analysis in a smart classroom context. The work derived the best favorable irradiance angle in terms of transmitter–receiver separation at which user devices achieve the highest SINR and transmission rate considering both two-dimensional (2D) and three-dimensional (3D) coverage areas. Moreover, the work analyzed SINR-based BER and average BER for the same communication scenario. The research derived that 47° to 50° irradiance angles of the receiver’s orientation and incident light offer the most favorable performance.
期刊介绍:
This is the journal for all scientists working in optical communications. Journal of Optical Communications was the first international publication covering all fields of optical communications with guided waves. It is the aim of the journal to serve all scientists engaged in optical communications as a comprehensive journal tailored to their needs and as a forum for their publications. The journal focuses on the main fields in optical communications