Cathode materials in microbial electrosynthesis systems for carbon dioxide reduction: recent progress and perspectives

Su Hui, Yujing Jiang, Yuanfan Jiang, Zhaoyuan Lyu, Shichao Ding, Bing Song, Wenlei Zhu, Jun-Jie Zhu
{"title":"Cathode materials in microbial electrosynthesis systems for carbon dioxide reduction: recent progress and perspectives","authors":"Su Hui, Yujing Jiang, Yuanfan Jiang, Zhaoyuan Lyu, Shichao Ding, Bing Song, Wenlei Zhu, Jun-Jie Zhu","doi":"10.20517/energymater.2023.60","DOIUrl":null,"url":null,"abstract":"Microbial electrosynthesis (MES) is an emerging technology that enables the synthesis of value-added chemicals from carbon dioxide (CO2) or inorganic carbon compounds by coupling renewable electricity to microbial metabolism. However, MES still faces challenges in achieving high production of value-added chemicals due to the limited extracellular electron transfer efficiency at the biotic-abiotic interfaces. To overcome this bottleneck, it is crucial to develop novel cathodes and modified materials. This review systematically summarizes recent advancements in cathode materials in the field of electrocatalyst-assisted and photocatalyst-assisted MES. The effects of various material types are further investigated by comparing metal-free and metal materials and photocatalyst materials of different semiconductor types. Additionally, the review introduces the maximum production rate of value-added chemicals and conversion efficiency achieved by these cathode materials while highlighting the advantages and disadvantages of different material types. To the best of our knowledge, in electrocatalyst-assisted systems, the maximum CH4 yield on graphene aerogel/polypyrrole cathode achieved 1,672 mmol m-2 d-1, and the maximum Faraday efficiency (FE) of CH4 reached up to 97.5% on graphite plate. Meanwhile, the maximum acetate yield achieved 1,330 g m-2 d-1 with CO2 conversion efficiency into acetate close to 100% on carbon nanotube cathodes. In photocatalyst-assisted systems, the maximum acetate yield could reach 0.51 g L-1 d-1 with the coulombic efficiency of 96% on the MnFe2O4/g-C3N4 photocathode. Finally, prospects for future development and practical applications of MES are discussed, offering theoretical guidance for the fabrication of cathode materials that can improve production efficiency and reduce energy input.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":" 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2023.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial electrosynthesis (MES) is an emerging technology that enables the synthesis of value-added chemicals from carbon dioxide (CO2) or inorganic carbon compounds by coupling renewable electricity to microbial metabolism. However, MES still faces challenges in achieving high production of value-added chemicals due to the limited extracellular electron transfer efficiency at the biotic-abiotic interfaces. To overcome this bottleneck, it is crucial to develop novel cathodes and modified materials. This review systematically summarizes recent advancements in cathode materials in the field of electrocatalyst-assisted and photocatalyst-assisted MES. The effects of various material types are further investigated by comparing metal-free and metal materials and photocatalyst materials of different semiconductor types. Additionally, the review introduces the maximum production rate of value-added chemicals and conversion efficiency achieved by these cathode materials while highlighting the advantages and disadvantages of different material types. To the best of our knowledge, in electrocatalyst-assisted systems, the maximum CH4 yield on graphene aerogel/polypyrrole cathode achieved 1,672 mmol m-2 d-1, and the maximum Faraday efficiency (FE) of CH4 reached up to 97.5% on graphite plate. Meanwhile, the maximum acetate yield achieved 1,330 g m-2 d-1 with CO2 conversion efficiency into acetate close to 100% on carbon nanotube cathodes. In photocatalyst-assisted systems, the maximum acetate yield could reach 0.51 g L-1 d-1 with the coulombic efficiency of 96% on the MnFe2O4/g-C3N4 photocathode. Finally, prospects for future development and practical applications of MES are discussed, offering theoretical guidance for the fabrication of cathode materials that can improve production efficiency and reduce energy input.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微生物电合成系统中用于二氧化碳还原的正极材料:最新进展和展望
微生物电合成(MES)是一项新兴技术,通过将可再生电力与微生物代谢相结合,使二氧化碳(CO2)或无机碳化合物合成增值化学品成为可能。然而,由于生物-非生物界面的细胞外电子传递效率有限,MES在实现高附加值化学品生产方面仍然面临挑战。为了克服这一瓶颈,开发新型阴极和改性材料至关重要。本文系统地综述了电催化和光催化催化MES领域中正极材料的最新进展。通过比较不同半导体类型的无金属材料和金属材料和光触媒材料,进一步研究了不同材料类型的影响。此外,本文还介绍了这些正极材料的最大增值化学品产量和转化效率,并突出了不同材料类型的优缺点。据我们所知,在电催化辅助体系中,石墨烯气凝胶/聚吡咯阴极上CH4的最大产率可达1672 mmol m-2 d-1,石墨板上CH4的最大法拉第效率(FE)可达97.5%。同时,在碳纳米管阴极上,最大乙酸产率达到1330 g m-2 d-1, CO2转化为乙酸的效率接近100%。在光催化剂辅助体系中,MnFe2O4/g- c3n4光电阴极上的乙酸产率最高可达0.51 g L-1 d-1,库仑效率为96%。最后,对MES的未来发展和实际应用进行了展望,为制造提高生产效率、减少能量投入的正极材料提供理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cathode materials in microbial electrosynthesis systems for carbon dioxide reduction: recent progress and perspectives Strategies towards inhibition of aluminum current collector corrosion in lithium batteries Efficient separation and selective Li recycling of spent LiFePO4 cathode Fluorine chemistry in lithium-ion and sodium-ion batteries PGM-free carbon-based catalysts for the electrocatalytic oxygen reduction reaction: active sites and activity enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1