Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS IT-Information Technology Pub Date : 2023-11-09 DOI:10.1515/itit-2023-0061
Martin Böckling, Heiko Paulheim, Sarah Detzler
{"title":"Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs","authors":"Martin Böckling, Heiko Paulheim, Sarah Detzler","doi":"10.1515/itit-2023-0061","DOIUrl":null,"url":null,"abstract":"Abstract The frequency of wildfires increases yearly and poses a constant threat to the environment and human beings. Different factors, for example surrounding infrastructure to an area (e.g., campfire sites or power lines) contribute to the occurrence of wildfires. In this paper, we propose using a Spatio-Temporal Knowledge Graph (STKG) based on OpenStreetMap (OSM) data for modeling such infrastructure. Based on that knowledge graph, we use the RDF2vec approach to create embeddings for predicting wildfires, and we align different vector spaces generated at each temporal step by partial rotation. In an experimental study, we determine the effect of the surrounding infrastructure by comparing different data composition strategies, which involve a prediction based on tabular data, a combination of tabular data and embeddings, and solely embeddings. We show that the incorporation of the STKG increases the prediction quality of wildfires.","PeriodicalId":43953,"journal":{"name":"IT-Information Technology","volume":" 13","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT-Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/itit-2023-0061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The frequency of wildfires increases yearly and poses a constant threat to the environment and human beings. Different factors, for example surrounding infrastructure to an area (e.g., campfire sites or power lines) contribute to the occurrence of wildfires. In this paper, we propose using a Spatio-Temporal Knowledge Graph (STKG) based on OpenStreetMap (OSM) data for modeling such infrastructure. Based on that knowledge graph, we use the RDF2vec approach to create embeddings for predicting wildfires, and we align different vector spaces generated at each temporal step by partial rotation. In an experimental study, we determine the effect of the surrounding infrastructure by comparing different data composition strategies, which involve a prediction based on tabular data, a combination of tabular data and embeddings, and solely embeddings. We show that the incorporation of the STKG increases the prediction quality of wildfires.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空知识图的加州野火预测与比较
摘要森林火灾的发生频率逐年增加,对环境和人类构成了持续的威胁。不同的因素,例如一个地区周围的基础设施(例如,营火点或电线)会导致野火的发生。在本文中,我们建议使用基于OpenStreetMap (OSM)数据的时空知识图(STKG)来建模此类基础设施。基于该知识图,我们使用RDF2vec方法创建用于预测野火的嵌入,并通过部分旋转对齐在每个时间步骤生成的不同向量空间。在一项实验研究中,我们通过比较不同的数据组合策略来确定周围基础设施的影响,这些策略包括基于表格数据的预测、表格数据和嵌入的组合以及单独嵌入。结果表明,STKG的加入提高了野火的预测质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IT-Information Technology
IT-Information Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.80
自引率
0.00%
发文量
29
期刊最新文献
Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs Machine learning in AI Factories – five theses for developing, managing and maintaining data-driven artificial intelligence at large scale Machine learning applications Machine learning in sensor identification for industrial systems Machine learning and cyber security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1