Jaroslav Kovář, Vladimír Fuis, Radim Čtvrtlík, Jan Tomáštík
{"title":"The Influence of Tilt on Berkovich Indentation of a Steel Sample Using FEM Analysis and Nanoindentation","authors":"Jaroslav Kovář, Vladimír Fuis, Radim Čtvrtlík, Jan Tomáštík","doi":"10.2478/pmp-2022-0007","DOIUrl":null,"url":null,"abstract":"Abstract The main shape deviations of a Berkovich indenter are the indenter bluntness and indenter tilt. The influence of the Berkovich indenter tilt on the results of the FEM modelling of steel nanoindentation is evaluated in this paper. The indenter tilt has an impact on the indentation curves and contact area. The X5CrNiCuNb 16-4 steel nanoindentation was modelled by FEM and the indentation curves were obtained. The Berkovich indenter was blunted and the tilt of the indenter was changed to determine its influence on the indentation curves. The results showed that growing tilt shifts the indentation curves to higher values of indentation forces and makes unloading curves steeper which is in agreement with a larger contact area. The calculated indentation curves were compared with the experimental indentation curves and the impact of the indenter tilt to the indentation curves was determined.","PeriodicalId":52175,"journal":{"name":"Powder Metallurgy Progress","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy Progress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pmp-2022-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The main shape deviations of a Berkovich indenter are the indenter bluntness and indenter tilt. The influence of the Berkovich indenter tilt on the results of the FEM modelling of steel nanoindentation is evaluated in this paper. The indenter tilt has an impact on the indentation curves and contact area. The X5CrNiCuNb 16-4 steel nanoindentation was modelled by FEM and the indentation curves were obtained. The Berkovich indenter was blunted and the tilt of the indenter was changed to determine its influence on the indentation curves. The results showed that growing tilt shifts the indentation curves to higher values of indentation forces and makes unloading curves steeper which is in agreement with a larger contact area. The calculated indentation curves were compared with the experimental indentation curves and the impact of the indenter tilt to the indentation curves was determined.