A Classical Architecture For Digital Quantum Computers

Fang Zhang, Xing Zhu, Rui Chao, Cupjin Huang, Linghang Kong, Guoyang Chen, Dawei Ding, Haishan Feng, Yihuai Gao, Xiaotong Ni, Liwei Qiu, Zhe Wei, Yueming Yang, Yang Zhao, Yaoyun Shi, Weifeng Zhang, Peng Zhou, Jianxin Chen
{"title":"A Classical Architecture For Digital Quantum Computers","authors":"Fang Zhang, Xing Zhu, Rui Chao, Cupjin Huang, Linghang Kong, Guoyang Chen, Dawei Ding, Haishan Feng, Yihuai Gao, Xiaotong Ni, Liwei Qiu, Zhe Wei, Yueming Yang, Yang Zhao, Yaoyun Shi, Weifeng Zhang, Peng Zhou, Jianxin Chen","doi":"10.1145/3626199","DOIUrl":null,"url":null,"abstract":"Scaling bottlenecks the making of digital quantum computers, posing challenges from both the quantum and the classical components. We present a classical architecture to cope with a comprehensive list of the latter challenges all at once , and implement it fully in an end-to-end system by integrating a multi-core RISC-V CPU with our in-house control electronics. Our architecture enables scalable, high-precision control of large quantum processors and accommodates evolving requirements of quantum hardware. A central feature is a microarchitecture executing quantum operations in parallel on arbitrary predefined qubit groups. Another key feature is a reconfigurable quantum instruction set that supports easy qubit re-grouping and instructions extensions. As a demonstration, we implement the surface code quantum computing workflow. Our design, for the first time, reduces instruction issuing and transmission costs to constants, which do not scale with the number of qubits, without adding any overheads in decoding or dispatching. Our system uses a dedicated general-purpose CPU for both qubit control and classical computation, including syndrome decoding. Implementing recent theoretical proposals as decoding firmware that parallelizes general inner decoders, we can achieve unprecedented decoding capabilities of up to distances 47 and 67 with the currently available systems-on-chips for physical error rate p = 0.001 and p = 0.0001, respectively, all in just 1 µs.","PeriodicalId":474832,"journal":{"name":"ACM transactions on quantum computing","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM transactions on quantum computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3626199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Scaling bottlenecks the making of digital quantum computers, posing challenges from both the quantum and the classical components. We present a classical architecture to cope with a comprehensive list of the latter challenges all at once , and implement it fully in an end-to-end system by integrating a multi-core RISC-V CPU with our in-house control electronics. Our architecture enables scalable, high-precision control of large quantum processors and accommodates evolving requirements of quantum hardware. A central feature is a microarchitecture executing quantum operations in parallel on arbitrary predefined qubit groups. Another key feature is a reconfigurable quantum instruction set that supports easy qubit re-grouping and instructions extensions. As a demonstration, we implement the surface code quantum computing workflow. Our design, for the first time, reduces instruction issuing and transmission costs to constants, which do not scale with the number of qubits, without adding any overheads in decoding or dispatching. Our system uses a dedicated general-purpose CPU for both qubit control and classical computation, including syndrome decoding. Implementing recent theoretical proposals as decoding firmware that parallelizes general inner decoders, we can achieve unprecedented decoding capabilities of up to distances 47 and 67 with the currently available systems-on-chips for physical error rate p = 0.001 and p = 0.0001, respectively, all in just 1 µs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数字量子计算机的经典架构
数字量子计算机的制造遇到了规模瓶颈,这对量子和经典组件都提出了挑战。我们提出了一个经典的架构,以应对后一种挑战的全面列表,并通过将多核RISC-V CPU与我们的内部控制电子设备集成在一个端到端系统中完全实现它。我们的架构能够对大型量子处理器进行可扩展、高精度的控制,并适应量子硬件不断发展的需求。其核心特征是在任意预定义量子比特组上并行执行量子运算的微架构。另一个关键特性是可重构量子指令集,支持简单的量子位重新分组和指令扩展。作为演示,我们实现了表面代码量子计算工作流。我们的设计首次将指令发布和传输成本降低到常量,这些常量不随量子位的数量而扩展,而不会增加解码或调度的任何开销。我们的系统使用专用的通用CPU进行量子比特控制和经典计算,包括综合征解码。实现最近的理论建议作为解码固件,并行一般内部解码器,我们可以实现前所未有的解码能力,高达距离47和67,目前可用的片上系统的物理错误率分别为p = 0.001和p = 0.0001,所有这些都在1µs内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lessons from Twenty Years of Quantum Image Processing Formal Verification of Quantum Programs: Theory, Tools and Challenges A Classical Architecture For Digital Quantum Computers Milestones on the Quantum Utility Highway: Quantum Annealing Case Study SpinQ: Compilation Strategies for Scalable Spin-Qubit Architectures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1