Resource saving via ensemble techniques for quantum neural networks

IF 4.1 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Quantum Machine Intelligence Pub Date : 2023-09-29 DOI:10.1007/s42484-023-00126-z
Massimiliano Incudini, Michele Grossi, Andrea Ceschini, Antonio Mandarino, Massimo Panella, Sofia Vallecorsa, David Windridge
{"title":"Resource saving via ensemble techniques for quantum neural networks","authors":"Massimiliano Incudini, Michele Grossi, Andrea Ceschini, Antonio Mandarino, Massimo Panella, Sofia Vallecorsa, David Windridge","doi":"10.1007/s42484-023-00126-z","DOIUrl":null,"url":null,"abstract":"Abstract Quantum neural networks hold significant promise for numerous applications, particularly as they can be executed on the current generation of quantum hardware. However, due to limited qubits or hardware noise, conducting large-scale experiments often requires significant resources. Moreover, the output of the model is susceptible to corruption by quantum hardware noise. To address this issue, we propose the use of ensemble techniques, which involve constructing a single machine learning model based on multiple instances of quantum neural networks. In particular, we implement bagging and AdaBoost techniques, with different data loading configurations, and evaluate their performance on both synthetic and real-world classification and regression tasks. To assess the potential performance improvement under different environments, we conducted experiments on both simulated, noiseless software and IBM superconducting-based QPUs, suggesting these techniques can mitigate the quantum hardware noise. Additionally, we quantify the amount of resources saved using these ensemble techniques. Our findings indicate that these methods enable the construction of large, powerful models even on relatively small quantum devices.","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Machine Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42484-023-00126-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Quantum neural networks hold significant promise for numerous applications, particularly as they can be executed on the current generation of quantum hardware. However, due to limited qubits or hardware noise, conducting large-scale experiments often requires significant resources. Moreover, the output of the model is susceptible to corruption by quantum hardware noise. To address this issue, we propose the use of ensemble techniques, which involve constructing a single machine learning model based on multiple instances of quantum neural networks. In particular, we implement bagging and AdaBoost techniques, with different data loading configurations, and evaluate their performance on both synthetic and real-world classification and regression tasks. To assess the potential performance improvement under different environments, we conducted experiments on both simulated, noiseless software and IBM superconducting-based QPUs, suggesting these techniques can mitigate the quantum hardware noise. Additionally, we quantify the amount of resources saved using these ensemble techniques. Our findings indicate that these methods enable the construction of large, powerful models even on relatively small quantum devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于量子神经网络集成技术的资源节约
量子神经网络在许多应用中具有重要的前景,特别是因为它们可以在当前一代量子硬件上执行。然而,由于有限的量子比特或硬件噪声,进行大规模实验往往需要大量的资源。此外,该模型的输出容易受到量子硬件噪声的破坏。为了解决这个问题,我们建议使用集成技术,这涉及到基于多个量子神经网络实例构建单个机器学习模型。特别是,我们在不同的数据加载配置下实现了bagging和AdaBoost技术,并评估了它们在合成和现实世界分类和回归任务上的性能。为了评估在不同环境下潜在的性能改进,我们在模拟、无噪声软件和IBM超导qpu上进行了实验,表明这些技术可以减轻量子硬件噪声。此外,我们量化了使用这些集成技术节省的资源量。我们的研究结果表明,这些方法甚至可以在相对较小的量子设备上构建大型,强大的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
4.20%
发文量
29
期刊最新文献
Analyzing the effectiveness of quantum annealing with meta-learning SoK: quantum computing methods for machine learning optimization Evaluation of VQC-LSTM for disability forecasting in multiple sclerosis using sequential multisequence MRI Leveraging Quantum Kernel Support Vector Machine for breast cancer diagnosis from Digital Breast Tomosynthesis images Iteration-Free quantum approximate optimization algorithm using neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1