首页 > 最新文献

Quantum Machine Intelligence最新文献

英文 中文
Time series quantum classifiers with amplitude embedding 带振幅嵌入的时间序列量子分类器
IF 4.8 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-11-27 DOI: 10.1007/s42484-023-00133-0
Manuel P. Cuéllar, Carlos Cano Gutierrez, Luis G. Baca Ruíz, Lorenzo Servadei
{"title":"Time series quantum classifiers with amplitude embedding","authors":"Manuel P. Cuéllar, Carlos Cano Gutierrez, Luis G. Baca Ruíz, Lorenzo Servadei","doi":"10.1007/s42484-023-00133-0","DOIUrl":"https://doi.org/10.1007/s42484-023-00133-0","url":null,"abstract":"","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":"28 1","pages":"1-13"},"PeriodicalIF":4.8,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139234822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditional generative models for learning stochastic processes 学习随机过程的条件生成模型
Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-10-13 DOI: 10.1007/s42484-023-00129-w
Salvatore Certo, Anh Pham, Nicolas Robles, Andrew Vlasic
{"title":"Conditional generative models for learning stochastic processes","authors":"Salvatore Certo, Anh Pham, Nicolas Robles, Andrew Vlasic","doi":"10.1007/s42484-023-00129-w","DOIUrl":"https://doi.org/10.1007/s42484-023-00129-w","url":null,"abstract":"","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135918823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Quantum convolutional neural networks for multi-channel supervised learning 多通道监督学习的量子卷积神经网络
Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-10-09 DOI: 10.1007/s42484-023-00130-3
Anthony M. Smaldone, Gregory W. Kyro, Victor S. Batista
{"title":"Quantum convolutional neural networks for multi-channel supervised learning","authors":"Anthony M. Smaldone, Gregory W. Kyro, Victor S. Batista","doi":"10.1007/s42484-023-00130-3","DOIUrl":"https://doi.org/10.1007/s42484-023-00130-3","url":null,"abstract":"","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":"94 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135141977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interaction graph-based characterization of quantum benchmarks for improving quantum circuit mapping techniques 基于交互图的量子基准表征改进量子电路映射技术
Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-10-06 DOI: 10.1007/s42484-023-00124-1
Medina Bandic, Carmen G. Almudever, Sebastian Feld
Abstract To execute quantum circuits on a quantum processor, they must be modified to meet the physical constraints of the quantum device. This process, called quantum circuit mapping , results in a gate/circuit depth overhead that depends on both the circuit properties and the hardware constraints, being the limited qubit connectivity a crucial restriction. In this paper, we propose to extend the characterization of quantum circuits by including qubit interaction graph properties using graph theory-based metrics in addition to previously used circuit-describing parameters. This approach allows for an in-depth analysis and clustering of quantum circuits and a comparison of performance when run on different quantum processors, aiding in developing better mapping techniques. Our study reveals a correlation between interaction graph-based parameters and mapping performance metrics for various existing configurations of quantum devices. We also provide a comprehensive collection of quantum circuits and algorithms for benchmarking future compilation techniques and quantum devices.
要在量子处理器上执行量子电路,必须对其进行修改以满足量子器件的物理约束。这个过程被称为量子电路映射,导致门/电路深度开销,这取决于电路属性和硬件约束,有限的量子比特连接是一个关键的限制。在本文中,我们建议通过使用基于图论的度量来扩展量子电路的表征,除了以前使用的电路描述参数之外,还包括量子比特相互作用图属性。这种方法允许对量子电路进行深入分析和聚类,并在不同量子处理器上运行时比较性能,有助于开发更好的映射技术。我们的研究揭示了基于交互图的参数与各种现有量子器件配置的映射性能指标之间的相关性。我们还提供了一个全面的量子电路和算法集合,用于对未来的编译技术和量子器件进行基准测试。
{"title":"Interaction graph-based characterization of quantum benchmarks for improving quantum circuit mapping techniques","authors":"Medina Bandic, Carmen G. Almudever, Sebastian Feld","doi":"10.1007/s42484-023-00124-1","DOIUrl":"https://doi.org/10.1007/s42484-023-00124-1","url":null,"abstract":"Abstract To execute quantum circuits on a quantum processor, they must be modified to meet the physical constraints of the quantum device. This process, called quantum circuit mapping , results in a gate/circuit depth overhead that depends on both the circuit properties and the hardware constraints, being the limited qubit connectivity a crucial restriction. In this paper, we propose to extend the characterization of quantum circuits by including qubit interaction graph properties using graph theory-based metrics in addition to previously used circuit-describing parameters. This approach allows for an in-depth analysis and clustering of quantum circuits and a comparison of performance when run on different quantum processors, aiding in developing better mapping techniques. Our study reveals a correlation between interaction graph-based parameters and mapping performance metrics for various existing configurations of quantum devices. We also provide a comprehensive collection of quantum circuits and algorithms for benchmarking future compilation techniques and quantum devices.","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135302292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Resource saving via ensemble techniques for quantum neural networks 基于量子神经网络集成技术的资源节约
Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-09-29 DOI: 10.1007/s42484-023-00126-z
Massimiliano Incudini, Michele Grossi, Andrea Ceschini, Antonio Mandarino, Massimo Panella, Sofia Vallecorsa, David Windridge
Abstract Quantum neural networks hold significant promise for numerous applications, particularly as they can be executed on the current generation of quantum hardware. However, due to limited qubits or hardware noise, conducting large-scale experiments often requires significant resources. Moreover, the output of the model is susceptible to corruption by quantum hardware noise. To address this issue, we propose the use of ensemble techniques, which involve constructing a single machine learning model based on multiple instances of quantum neural networks. In particular, we implement bagging and AdaBoost techniques, with different data loading configurations, and evaluate their performance on both synthetic and real-world classification and regression tasks. To assess the potential performance improvement under different environments, we conducted experiments on both simulated, noiseless software and IBM superconducting-based QPUs, suggesting these techniques can mitigate the quantum hardware noise. Additionally, we quantify the amount of resources saved using these ensemble techniques. Our findings indicate that these methods enable the construction of large, powerful models even on relatively small quantum devices.
量子神经网络在许多应用中具有重要的前景,特别是因为它们可以在当前一代量子硬件上执行。然而,由于有限的量子比特或硬件噪声,进行大规模实验往往需要大量的资源。此外,该模型的输出容易受到量子硬件噪声的破坏。为了解决这个问题,我们建议使用集成技术,这涉及到基于多个量子神经网络实例构建单个机器学习模型。特别是,我们在不同的数据加载配置下实现了bagging和AdaBoost技术,并评估了它们在合成和现实世界分类和回归任务上的性能。为了评估在不同环境下潜在的性能改进,我们在模拟、无噪声软件和IBM超导qpu上进行了实验,表明这些技术可以减轻量子硬件噪声。此外,我们量化了使用这些集成技术节省的资源量。我们的研究结果表明,这些方法甚至可以在相对较小的量子设备上构建大型,强大的模型。
{"title":"Resource saving via ensemble techniques for quantum neural networks","authors":"Massimiliano Incudini, Michele Grossi, Andrea Ceschini, Antonio Mandarino, Massimo Panella, Sofia Vallecorsa, David Windridge","doi":"10.1007/s42484-023-00126-z","DOIUrl":"https://doi.org/10.1007/s42484-023-00126-z","url":null,"abstract":"Abstract Quantum neural networks hold significant promise for numerous applications, particularly as they can be executed on the current generation of quantum hardware. However, due to limited qubits or hardware noise, conducting large-scale experiments often requires significant resources. Moreover, the output of the model is susceptible to corruption by quantum hardware noise. To address this issue, we propose the use of ensemble techniques, which involve constructing a single machine learning model based on multiple instances of quantum neural networks. In particular, we implement bagging and AdaBoost techniques, with different data loading configurations, and evaluate their performance on both synthetic and real-world classification and regression tasks. To assess the potential performance improvement under different environments, we conducted experiments on both simulated, noiseless software and IBM superconducting-based QPUs, suggesting these techniques can mitigate the quantum hardware noise. Additionally, we quantify the amount of resources saved using these ensemble techniques. Our findings indicate that these methods enable the construction of large, powerful models even on relatively small quantum devices.","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135199040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Hybrid quantum ResNet for car classification and its hyperparameter optimization 混合量子ResNet汽车分类及其超参数优化
Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-09-29 DOI: 10.1007/s42484-023-00123-2
Asel Sagingalieva, Mo Kordzanganeh, Andrii Kurkin, Artem Melnikov, Daniil Kuhmistrov, Michael Perelshtein, Alexey Melnikov, Andrea Skolik, David Von Dollen
Abstract Image recognition is one of the primary applications of machine learning algorithms. Nevertheless, machine learning models used in modern image recognition systems consist of millions of parameters that usually require significant computational time to be adjusted. Moreover, adjustment of model hyperparameters leads to additional overhead. Because of this, new developments in machine learning models and hyperparameter optimization techniques are required. This paper presents a quantum-inspired hyperparameter optimization technique and a hybrid quantum-classical machine learning model for supervised learning. We benchmark our hyperparameter optimization method over standard black-box objective functions and observe performance improvements in the form of reduced expected run times and fitness in response to the growth in the size of the search space. We test our approaches in a car image classification task and demonstrate a full-scale implementation of the hybrid quantum ResNet model with the tensor train hyperparameter optimization. Our tests show a qualitative and quantitative advantage over the corresponding standard classical tabular grid search approach used with a deep neural network ResNet34. A classification accuracy of 0.97 was obtained by the hybrid model after 18 iterations, whereas the classical model achieved an accuracy of 0.92 after 75 iterations.
摘要图像识别是机器学习算法的主要应用之一。然而,现代图像识别系统中使用的机器学习模型由数百万个参数组成,通常需要大量的计算时间来调整。此外,模型超参数的调整会导致额外的开销。因此,需要机器学习模型和超参数优化技术的新发展。本文提出了一种量子启发的超参数优化技术和一种用于监督学习的量子-经典混合机器学习模型。我们在标准黑盒目标函数上对我们的超参数优化方法进行了基准测试,并观察到随着搜索空间大小的增长,预期运行时间和适应度的减少,性能得到了改善。我们在一个汽车图像分类任务中测试了我们的方法,并展示了使用张量列超参数优化的混合量子ResNet模型的全尺寸实现。我们的测试表明,与使用深度神经网络ResNet34的相应标准经典表格网格搜索方法相比,该方法在定性和定量上都有优势。混合模型经过18次迭代得到0.97的分类精度,而经典模型经过75次迭代得到0.92的分类精度。
{"title":"Hybrid quantum ResNet for car classification and its hyperparameter optimization","authors":"Asel Sagingalieva, Mo Kordzanganeh, Andrii Kurkin, Artem Melnikov, Daniil Kuhmistrov, Michael Perelshtein, Alexey Melnikov, Andrea Skolik, David Von Dollen","doi":"10.1007/s42484-023-00123-2","DOIUrl":"https://doi.org/10.1007/s42484-023-00123-2","url":null,"abstract":"Abstract Image recognition is one of the primary applications of machine learning algorithms. Nevertheless, machine learning models used in modern image recognition systems consist of millions of parameters that usually require significant computational time to be adjusted. Moreover, adjustment of model hyperparameters leads to additional overhead. Because of this, new developments in machine learning models and hyperparameter optimization techniques are required. This paper presents a quantum-inspired hyperparameter optimization technique and a hybrid quantum-classical machine learning model for supervised learning. We benchmark our hyperparameter optimization method over standard black-box objective functions and observe performance improvements in the form of reduced expected run times and fitness in response to the growth in the size of the search space. We test our approaches in a car image classification task and demonstrate a full-scale implementation of the hybrid quantum ResNet model with the tensor train hyperparameter optimization. Our tests show a qualitative and quantitative advantage over the corresponding standard classical tabular grid search approach used with a deep neural network ResNet34. A classification accuracy of 0.97 was obtained by the hybrid model after 18 iterations, whereas the classical model achieved an accuracy of 0.92 after 75 iterations.","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135131986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
A quantum “black box” for entropy calculation 熵计算的量子“黑箱”
IF 4.8 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-08-31 DOI: 10.1007/s42484-023-00127-y
Michal Koren, Oded Koren, Or Peretz
{"title":"A quantum “black box” for entropy calculation","authors":"Michal Koren, Oded Koren, Or Peretz","doi":"10.1007/s42484-023-00127-y","DOIUrl":"https://doi.org/10.1007/s42484-023-00127-y","url":null,"abstract":"","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43140099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparing quantum and classical machine learning for Vector Boson Scattering background reduction at the Large Hadron Collider 量子和经典机器学习在大型强子对撞机矢量玻色子散射背景降低中的比较
IF 4.8 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-08-09 DOI: 10.1007/s42484-023-00106-3
Davide Cugini, D. Gerace, P. Govoni, Aurora Perego, D. Valsecchi
{"title":"Comparing quantum and classical machine learning for Vector Boson Scattering background reduction at the Large Hadron Collider","authors":"Davide Cugini, D. Gerace, P. Govoni, Aurora Perego, D. Valsecchi","doi":"10.1007/s42484-023-00106-3","DOIUrl":"https://doi.org/10.1007/s42484-023-00106-3","url":null,"abstract":"","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41487157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Quantum autoencoders for communication-efficient cloud computing 用于高效通信云计算的量子自编码器
IF 4.8 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-07-10 DOI: 10.1007/s42484-023-00112-5
Yan Zhu, G. Bai, Yuexuan Wang, Tongyang Li, G. Chiribella
{"title":"Quantum autoencoders for communication-efficient cloud computing","authors":"Yan Zhu, G. Bai, Yuexuan Wang, Tongyang Li, G. Chiribella","doi":"10.1007/s42484-023-00112-5","DOIUrl":"https://doi.org/10.1007/s42484-023-00112-5","url":null,"abstract":"","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42986944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Linear-layer-enhanced quantum long short-term memory for carbon price forecasting 用于碳价格预测的线性层增强量子长短期记忆
IF 4.8 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2023-07-05 DOI: 10.1007/s42484-023-00115-2
Yu Cao, Xiyuan Zhou, Xiang Fei, Huan Zhao, Wenxuan Liu, Junhua Zhao
{"title":"Linear-layer-enhanced quantum long short-term memory for carbon price forecasting","authors":"Yu Cao, Xiyuan Zhou, Xiang Fei, Huan Zhao, Wenxuan Liu, Junhua Zhao","doi":"10.1007/s42484-023-00115-2","DOIUrl":"https://doi.org/10.1007/s42484-023-00115-2","url":null,"abstract":"","PeriodicalId":29924,"journal":{"name":"Quantum Machine Intelligence","volume":" ","pages":""},"PeriodicalIF":4.8,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41880776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Quantum Machine Intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1