L. Coraggio , G. De Gregorio , T. Fukui , A. Gargano , Y.Z. Ma , Z.H. Cheng , F.R. Xu
{"title":"The role of three-nucleon potentials within the shell model: Past and present","authors":"L. Coraggio , G. De Gregorio , T. Fukui , A. Gargano , Y.Z. Ma , Z.H. Cheng , F.R. Xu","doi":"10.1016/j.ppnp.2023.104079","DOIUrl":null,"url":null,"abstract":"<div><p>We survey the impact of nuclear three-body forces on structure properties of nuclei within the shell model. It has long been acknowledged, since the seminal works of Zuker and coworkers, that three-body forces play a fundamental role in making the monopole component of shell-model Hamiltonians, derived from realistic nucleon–nucleon potentials, able to reproduce the observed evolution of the shell structure. In the vast majority of calculations, however, their effects have been taken into account by shell-model practitioners by introducing <em>ad hoc</em><span><span> modifications of the monopole matrix elements. During last twenty years, a new theoretical approach, framed within the chiral perturbation theory, has progressed in developing nuclear potentials, where two- and many-body components are naturally and consistently built in. This new class of nuclear forces allows to carry out </span>nuclear structure<span> studies that are improving our ability to understand nuclear phenomena in a microscopic approach. We provide in this work an update on the status of the nuclear shell model based on realistic Hamiltonians that are derived from two- and three-nucleon chiral potentials, focusing on the role of the three-body component to provide the observed shell evolution and closure properties, as well as the location of driplines. To this end, we present the results of shell-model calculations and their comparison with recent experimental measurements, which enlighten the relevance of the inclusion of three-nucleon forces to master our knowledge of the physics of atomic nuclei.</span></span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"134 ","pages":"Article 104079"},"PeriodicalIF":14.5000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641023000601","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
We survey the impact of nuclear three-body forces on structure properties of nuclei within the shell model. It has long been acknowledged, since the seminal works of Zuker and coworkers, that three-body forces play a fundamental role in making the monopole component of shell-model Hamiltonians, derived from realistic nucleon–nucleon potentials, able to reproduce the observed evolution of the shell structure. In the vast majority of calculations, however, their effects have been taken into account by shell-model practitioners by introducing ad hoc modifications of the monopole matrix elements. During last twenty years, a new theoretical approach, framed within the chiral perturbation theory, has progressed in developing nuclear potentials, where two- and many-body components are naturally and consistently built in. This new class of nuclear forces allows to carry out nuclear structure studies that are improving our ability to understand nuclear phenomena in a microscopic approach. We provide in this work an update on the status of the nuclear shell model based on realistic Hamiltonians that are derived from two- and three-nucleon chiral potentials, focusing on the role of the three-body component to provide the observed shell evolution and closure properties, as well as the location of driplines. To this end, we present the results of shell-model calculations and their comparison with recent experimental measurements, which enlighten the relevance of the inclusion of three-nucleon forces to master our knowledge of the physics of atomic nuclei.
期刊介绍:
Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.