{"title":"Computational Thinking and Why It Matters","authors":"Beth Murphy","doi":"10.1080/24758779.2023.12318620","DOIUrl":null,"url":null,"abstract":"AbstractEvery now and then, I think of how much schooling has changed since I was a kid. This is true across all disciplines, and certainly when it comes to science-related subjects. Honestly, as I write this, only a single science memory from before ninth grade comes to mind: learning about archaeological discoveries from textbook and film. I must admit, though, the fact that I remember this is most likely because my classmate Rusty ran around the wooded part of our schoolyard during recess for the better part of a week pretending he was Dr. Richard Leakey digging up Homo sapiens skulls, not because of any classroom lesson. Clearly, Rusty found the textbook reading to be inspiring; I doubt it worked out that way for most of my classmates. Looking back, I realize that I went into science because I liked solving word problems, not because I wanted to be a scientist or, frankly, really understood what the job of a scientist was like. When I was a graduate student and even an early-career college professor, I struggled with coming up with my own questions to investigate because my prior experience honing this skill was so limited. I think of how much better prepared I would have been if I learned science as it is being taught now.Keywords: Informal Education Additional informationNotes on contributorsBeth MurphyBeth Murphy, PhD (bmurphy@nsta.org), is field editor for Connected Science Learning and an independent STEM education consultant with expertise in fostering collaboration between organizations and schools, providing professional learning experiences for educators, and implementing program evaluation that supports practitioners to do their best work.","PeriodicalId":72694,"journal":{"name":"Connected science learning","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connected science learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24758779.2023.12318620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractEvery now and then, I think of how much schooling has changed since I was a kid. This is true across all disciplines, and certainly when it comes to science-related subjects. Honestly, as I write this, only a single science memory from before ninth grade comes to mind: learning about archaeological discoveries from textbook and film. I must admit, though, the fact that I remember this is most likely because my classmate Rusty ran around the wooded part of our schoolyard during recess for the better part of a week pretending he was Dr. Richard Leakey digging up Homo sapiens skulls, not because of any classroom lesson. Clearly, Rusty found the textbook reading to be inspiring; I doubt it worked out that way for most of my classmates. Looking back, I realize that I went into science because I liked solving word problems, not because I wanted to be a scientist or, frankly, really understood what the job of a scientist was like. When I was a graduate student and even an early-career college professor, I struggled with coming up with my own questions to investigate because my prior experience honing this skill was so limited. I think of how much better prepared I would have been if I learned science as it is being taught now.Keywords: Informal Education Additional informationNotes on contributorsBeth MurphyBeth Murphy, PhD (bmurphy@nsta.org), is field editor for Connected Science Learning and an independent STEM education consultant with expertise in fostering collaboration between organizations and schools, providing professional learning experiences for educators, and implementing program evaluation that supports practitioners to do their best work.