Integrated Analysis of Long Non-Coding RNA Expression Profiles in Glaesserella parasuis-Induced Meningitis: New Insight into Pathogenesis

IF 2.1 Q3 MICROBIOLOGY Microbiology Research Pub Date : 2023-09-18 DOI:10.3390/microbiolres14030097
Peiyan Sun, Yaqiong Yang, Hongxing Cheng, Shulin Fu, Yulan Liu, Yinsheng Qiu, Hongbo Chen, Jing Zhang, Huanhuan Zhou, Liangyu Shi, Hongyan Ren, Zhe Chao, Ling Guo
{"title":"Integrated Analysis of Long Non-Coding RNA Expression Profiles in Glaesserella parasuis-Induced Meningitis: New Insight into Pathogenesis","authors":"Peiyan Sun, Yaqiong Yang, Hongxing Cheng, Shulin Fu, Yulan Liu, Yinsheng Qiu, Hongbo Chen, Jing Zhang, Huanhuan Zhou, Liangyu Shi, Hongyan Ren, Zhe Chao, Ling Guo","doi":"10.3390/microbiolres14030097","DOIUrl":null,"url":null,"abstract":"Glaesserella parasuis (G. parasuis) can elicit meningitis in pigs; however, the pathogenic mechanisms of meningitis induced by G. parasuis remain unclear. Long non-coding RNAs (lncRNAs) have been proven to play key roles in a variety of physiological and pathological processes. However, whether lncRNAs are involved in meningitis triggered by G. parasuis has not been investigated. In this study, we performed an integrative analysis of lncRNAs expression profiles in the porcine brain infected with G. parasuis using RNA-seq. The results showed that lncRNA expressions in G. parasuis-induced meningitis were modified, and a total of 306 lncRNAs exhibited significant differential expression, in which 176 lncRNAs were up-regulated and 130 lncRNAs were down-regulated. KEGG enrichment analysis demonstrated that the differentially expressed target mRNAs of affected lncRNAs in G. parasuis-infected porcine brain were mainly involved in the cell adhesion molecules (CAMs), Jak-STAT signaling pathway, PI3k-Akt signaling pathway, and TNF signaling pathway. The expression relationship between the most affected differential lncRNAs and their differential target mRNAs was visualized by a co-expression network. A protein-protein interaction network consisting of 12 differential targets was constructed using STRING analysis. In addition, differential expressions of important lncRNAs were validated by qRT-PCR. lncRNA ALDBSSCT0000007362, ALDBSSCT0000001959, ALDBSSCT0000005529, MSTRG.2939.1, and MSTRG.32374.1 showed the same expression pattern with the lncRNA sequencing data. Our results demonstrated that G. parasuis could modify the lncRNA expression profiles in the porcine brain. To the best of our knowledge, this is the first report revealing the integrative analysis of lncRNA expression profiles in G. parasuis-induced meningitis, which could enhance important information to understand the inflammatory functions of lncRNAs involved in swine meningitis, and also provide a foundation for finding out novel strategies to prevent and treat meningitis in piglets triggered by G. parasuis.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/microbiolres14030097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glaesserella parasuis (G. parasuis) can elicit meningitis in pigs; however, the pathogenic mechanisms of meningitis induced by G. parasuis remain unclear. Long non-coding RNAs (lncRNAs) have been proven to play key roles in a variety of physiological and pathological processes. However, whether lncRNAs are involved in meningitis triggered by G. parasuis has not been investigated. In this study, we performed an integrative analysis of lncRNAs expression profiles in the porcine brain infected with G. parasuis using RNA-seq. The results showed that lncRNA expressions in G. parasuis-induced meningitis were modified, and a total of 306 lncRNAs exhibited significant differential expression, in which 176 lncRNAs were up-regulated and 130 lncRNAs were down-regulated. KEGG enrichment analysis demonstrated that the differentially expressed target mRNAs of affected lncRNAs in G. parasuis-infected porcine brain were mainly involved in the cell adhesion molecules (CAMs), Jak-STAT signaling pathway, PI3k-Akt signaling pathway, and TNF signaling pathway. The expression relationship between the most affected differential lncRNAs and their differential target mRNAs was visualized by a co-expression network. A protein-protein interaction network consisting of 12 differential targets was constructed using STRING analysis. In addition, differential expressions of important lncRNAs were validated by qRT-PCR. lncRNA ALDBSSCT0000007362, ALDBSSCT0000001959, ALDBSSCT0000005529, MSTRG.2939.1, and MSTRG.32374.1 showed the same expression pattern with the lncRNA sequencing data. Our results demonstrated that G. parasuis could modify the lncRNA expression profiles in the porcine brain. To the best of our knowledge, this is the first report revealing the integrative analysis of lncRNA expression profiles in G. parasuis-induced meningitis, which could enhance important information to understand the inflammatory functions of lncRNAs involved in swine meningitis, and also provide a foundation for finding out novel strategies to prevent and treat meningitis in piglets triggered by G. parasuis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
副猪小绿杆菌所致脑膜炎长链非编码RNA表达谱的综合分析:对发病机制的新认识
副猪绿脓杆菌(副猪绿脓杆菌)可引起猪脑膜炎;然而,副猪嗜血杆菌引起脑膜炎的致病机制尚不清楚。长链非编码rna (lncRNAs)已被证明在多种生理和病理过程中发挥关键作用。然而,lncrna是否参与副猪嗜血杆菌引发的脑膜炎尚未被研究。在这项研究中,我们使用RNA-seq技术对感染副猪螺旋体的猪脑中的lncRNAs表达谱进行了综合分析。结果显示,副猪链球菌诱导的脑膜炎中lncRNA的表达发生了改变,共有306个lncRNA表现出显著的表达差异,其中176个lncRNA表达上调,130个lncRNA表达下调。KEGG富集分析表明,副猪G.感染猪脑中受影响lncRNAs差异表达的靶mrna主要涉及细胞粘附分子(CAMs)、Jak-STAT信号通路、PI3k-Akt信号通路和TNF信号通路。通过共表达网络可视化了受影响最大的差异lncrna与其差异靶mrna之间的表达关系。利用STRING分析方法构建了由12个差异靶点组成的蛋白-蛋白相互作用网络。此外,通过qRT-PCR验证了重要lncrna的差异表达。lncRNA ALDBSSCT0000007362、ALDBSSCT0000001959、ALDBSSCT0000005529、MSTRG.2939.1和MSTRG.32374.1的表达模式与lncRNA测序数据相同。我们的研究结果表明,副猪弧菌可以改变猪大脑中lncRNA的表达谱。据我们所知,这是首个揭示副猪弧菌诱导的脑膜炎中lncRNA表达谱的综合分析报告,可以为了解副猪弧菌引发的猪脑膜炎中lncRNA的炎症功能提供重要信息,也为寻找预防和治疗副猪弧菌引发的仔猪脑膜炎的新策略提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbiology Research
Microbiology Research MICROBIOLOGY-
CiteScore
1.90
自引率
6.70%
发文量
62
审稿时长
10 weeks
期刊介绍: Microbiology Research is an international, online-only, open access peer-reviewed journal which publishes original research, review articles, editorials, perspectives, case reports and brief reports to benefit researchers, microbiologists, physicians, veterinarians. Microbiology Research publishes ‘Clinic’ and ‘Research’ papers divided into two different skill and proficiency levels: ‘Junior’ and ‘Professional’. The aim of this four quadrant grid is to encourage younger researchers, physicians and veterinarians to submit their results even if their studies encompass just a limited set of observations or rely on basic statistical approach, yet upholding the customary sound approach of every scientific article.
期刊最新文献
Effect of Plant Growth Promoting Rhizobacteria on the Development and Biochemical Composition of Cucumber under Different Substrate Moisture Levels First Record of Summer Truffle (Tuber aestivum) in Portugal Exploring Local Reservoirs for Bacteriophages with Therapeutic Potential against ESKAPE Pathogens Probiotic Lactobacilli Ameliorate Antibiotic-Induced Cognitive and Behavioral Impairments in Mice New Insights into Molecular Characterization, Antimicrobial Resistance and Virulence Factors of Methicillin-Sensitive Coagulase-Positive Staphylococcus spp. from Dogs with Pyoderma and Otitis Externa
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1