Pub Date : 2024-08-09DOI: 10.3390/microbiolres15030101
Celeste Santos-Silva, C. Brígido
Tuber aestivum, commonly known as the summer truffle, is typically found in various parts of Europe where it grows naturally. However, its presence in Portugal was not confirmed until now. The first fruit bodies were collected in April 2024 at stone pine stands (Alenquer and Arruda dos Vinhos, Lisbon) and in June at holm oak stands (Salir, Faro). These specimens are characterized by hypogeous, subglobose, black ascomata with a peridium surface covered with pyramidal warts. Ascopores are subglobose-to-broadly ellipsoid, distinctively ornamented, usually 1–6 per asci. According to the results of the internal transcribed spacer (ITS) rDNA sequence analysis, these specimens form a well-supported group within the Aestivum clade, with T. aestivum being the closest phylogenetic taxon. This remarkable discovery opens up new opportunities for truffle exploitation in Portugal thanks to the summer truffle’s gastronomical value and high market prices.
{"title":"First Record of Summer Truffle (Tuber aestivum) in Portugal","authors":"Celeste Santos-Silva, C. Brígido","doi":"10.3390/microbiolres15030101","DOIUrl":"https://doi.org/10.3390/microbiolres15030101","url":null,"abstract":"Tuber aestivum, commonly known as the summer truffle, is typically found in various parts of Europe where it grows naturally. However, its presence in Portugal was not confirmed until now. The first fruit bodies were collected in April 2024 at stone pine stands (Alenquer and Arruda dos Vinhos, Lisbon) and in June at holm oak stands (Salir, Faro). These specimens are characterized by hypogeous, subglobose, black ascomata with a peridium surface covered with pyramidal warts. Ascopores are subglobose-to-broadly ellipsoid, distinctively ornamented, usually 1–6 per asci. According to the results of the internal transcribed spacer (ITS) rDNA sequence analysis, these specimens form a well-supported group within the Aestivum clade, with T. aestivum being the closest phylogenetic taxon. This remarkable discovery opens up new opportunities for truffle exploitation in Portugal thanks to the summer truffle’s gastronomical value and high market prices.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141923382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-09DOI: 10.3390/microbiolres15030102
Gerardo Zapata-Sifuentes, Manuel Fortis-Hernández, Jorge Sáenz-Mata, Christian Silva-Martínez, Liliana Lara-Capistrán, P. Preciado-Rangel, L. Hernández-Montiel
Cucumis sativus L. plants are subjected to stress during production, affecting their growth, development, and fruit quality due to abiotic factors. Thus, the aim of this research is to evaluate Pseudomonas paralactis, Sinorhizobium meliloti, and Acinetobacter radioresistens plant growth promoting rhizobacteria (PGPR) effect on C. sativus plants under three substrate moisture levels (100, 75, and 50%). A randomized complete block design (RCBD) was used with an A x B arrangement: (1) factor A (inoculant) with four levels; (2) PGPR and control (without bacterium); (3) factor B (substrate moisture content) with three levels. Plant height, root length, and fresh weight increased by inoculating PGPR (121%, 135%, and 134%, respectively); likewise, these variables increased with higher moisture content (177%, 204%, and 234%, respectively), while the effect of the interactions of the PGPR and the moisture content in the substrate showed statistical differences in plant height increasing of 197% and root length of 267%. On the other hand, the content of phenols, flavonoids, and antioxidant capacity was statistically different (p ≤ 0.05) in inoculated plants, with PGPR increasing by 117%, 126%, and 150% respectively. In the moisture content of the substrate, statistical differences were observed, with an increase in the flavonoid content (114%) and antioxidant capacity (116%). The assimilation of nitrogen was higher by 274% and phosphorus by 124% with the PGPR inoculation, the moisture content increased the nitrogen content in the plant (257%) and the phosphorus content in plant (135%), showing significant differences (p ≤ 0.05). However, the interaction of PGPR and moisture content only presented statistical differences in nitrogen assimilation. PGPR can be considered as an alternative to obtain vigorous cucumber seedlings.
{"title":"Effect of Plant Growth Promoting Rhizobacteria on the Development and Biochemical Composition of Cucumber under Different Substrate Moisture Levels","authors":"Gerardo Zapata-Sifuentes, Manuel Fortis-Hernández, Jorge Sáenz-Mata, Christian Silva-Martínez, Liliana Lara-Capistrán, P. Preciado-Rangel, L. Hernández-Montiel","doi":"10.3390/microbiolres15030102","DOIUrl":"https://doi.org/10.3390/microbiolres15030102","url":null,"abstract":"Cucumis sativus L. plants are subjected to stress during production, affecting their growth, development, and fruit quality due to abiotic factors. Thus, the aim of this research is to evaluate Pseudomonas paralactis, Sinorhizobium meliloti, and Acinetobacter radioresistens plant growth promoting rhizobacteria (PGPR) effect on C. sativus plants under three substrate moisture levels (100, 75, and 50%). A randomized complete block design (RCBD) was used with an A x B arrangement: (1) factor A (inoculant) with four levels; (2) PGPR and control (without bacterium); (3) factor B (substrate moisture content) with three levels. Plant height, root length, and fresh weight increased by inoculating PGPR (121%, 135%, and 134%, respectively); likewise, these variables increased with higher moisture content (177%, 204%, and 234%, respectively), while the effect of the interactions of the PGPR and the moisture content in the substrate showed statistical differences in plant height increasing of 197% and root length of 267%. On the other hand, the content of phenols, flavonoids, and antioxidant capacity was statistically different (p ≤ 0.05) in inoculated plants, with PGPR increasing by 117%, 126%, and 150% respectively. In the moisture content of the substrate, statistical differences were observed, with an increase in the flavonoid content (114%) and antioxidant capacity (116%). The assimilation of nitrogen was higher by 274% and phosphorus by 124% with the PGPR inoculation, the moisture content increased the nitrogen content in the plant (257%) and the phosphorus content in plant (135%), showing significant differences (p ≤ 0.05). However, the interaction of PGPR and moisture content only presented statistical differences in nitrogen assimilation. PGPR can be considered as an alternative to obtain vigorous cucumber seedlings.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141921972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.3390/microbiolres15030099
D. Yarullina, Vera Novoselova, Anastasia D. Alexandrova, A. Arslanova, Olga Yakovleva, Ilnar Shaidullov, Yury Nikolaev, Galina El-Registan, Vladimir Kudrin, G. Sitdikova
Increasing evidence suggests that the gut microbiota, through the “microbiota–gut–brain axis”, can regulate anxiety, mood, and cognitive abilities such as memory and learning processes. Consistently with this, treatments altering the gut microbiota, such as antibiotics and probiotics, may influence brain function and impact behavior. The mechanisms that underlie the interplay between the intestinal microbiota and the brain have been intensively studied. We aimed to investigate the effects of two probiotic lactobacilli strains, Lacticaseibacillus rhamnosus 12L and Lactiplantibacillus plantarum 8PA3, on behavioral disorders in mice induced by a two-week parenteral treatment with broad-spectrum antibiotics. On completion of the treatment, the mice were subjected to behavioral tests, including the open field test (OFT), novel object recognition test (ORT), and T-maze test. Antibiotic-treated mice demonstrated anxiety-related behavior, decreased cognition, and retarded exploratory activity that were ameliorated by the administration of probiotics. As was determined by high-performance liquid chromatography (HPLC), both tested strains produced serotonin and its metabolite 5-hydroxyindoleacetic acid (5-HIAA), as well as dopamine, which was further metabolized into norepinephrine by L. plantarum 8PA3 and epinephrine by L. rhamnosus 12L. Moreover, these lactobacilli were found to harbor catecholamines and 3,4-dihydroxyphenylacetic acid (DOPAC) in their biomass when grown on MRS broth. Additionally, L. plantarum 8PA3 and L. rhamnosus 12L were able to impact oxidative stress via H2O2 production and antioxidant activity, as determined in this study by the ferrous oxidation–xylenol orange (FOX) assay and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay, respectively. The results obtained in this study support the role of probiotics as a promising therapeutic for neurological disorders. However, more investigations are required to confirm the clinical significance of this finding.
{"title":"Probiotic Lactobacilli Ameliorate Antibiotic-Induced Cognitive and Behavioral Impairments in Mice","authors":"D. Yarullina, Vera Novoselova, Anastasia D. Alexandrova, A. Arslanova, Olga Yakovleva, Ilnar Shaidullov, Yury Nikolaev, Galina El-Registan, Vladimir Kudrin, G. Sitdikova","doi":"10.3390/microbiolres15030099","DOIUrl":"https://doi.org/10.3390/microbiolres15030099","url":null,"abstract":"Increasing evidence suggests that the gut microbiota, through the “microbiota–gut–brain axis”, can regulate anxiety, mood, and cognitive abilities such as memory and learning processes. Consistently with this, treatments altering the gut microbiota, such as antibiotics and probiotics, may influence brain function and impact behavior. The mechanisms that underlie the interplay between the intestinal microbiota and the brain have been intensively studied. We aimed to investigate the effects of two probiotic lactobacilli strains, Lacticaseibacillus rhamnosus 12L and Lactiplantibacillus plantarum 8PA3, on behavioral disorders in mice induced by a two-week parenteral treatment with broad-spectrum antibiotics. On completion of the treatment, the mice were subjected to behavioral tests, including the open field test (OFT), novel object recognition test (ORT), and T-maze test. Antibiotic-treated mice demonstrated anxiety-related behavior, decreased cognition, and retarded exploratory activity that were ameliorated by the administration of probiotics. As was determined by high-performance liquid chromatography (HPLC), both tested strains produced serotonin and its metabolite 5-hydroxyindoleacetic acid (5-HIAA), as well as dopamine, which was further metabolized into norepinephrine by L. plantarum 8PA3 and epinephrine by L. rhamnosus 12L. Moreover, these lactobacilli were found to harbor catecholamines and 3,4-dihydroxyphenylacetic acid (DOPAC) in their biomass when grown on MRS broth. Additionally, L. plantarum 8PA3 and L. rhamnosus 12L were able to impact oxidative stress via H2O2 production and antioxidant activity, as determined in this study by the ferrous oxidation–xylenol orange (FOX) assay and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay, respectively. The results obtained in this study support the role of probiotics as a promising therapeutic for neurological disorders. However, more investigations are required to confirm the clinical significance of this finding.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-08DOI: 10.3390/microbiolres15030098
Alejandra Aidee Loera Piedra, Isamar Leticia Becerra Mejía, Brenda Luna Galicia, Sergio Francisco Martínez Díaz, Julieta Luna Herrera, Ma. Guadalupe Aguilera Arreola
Bacteriophage therapy is a promising strategy used to treat antimicrobial-resistant or persistent bacterial infections. More recently, the clinical utility of bacteriophages has been rediscovered due to the rise of multi-drug resistance and their potential use in clinical practice as an additional treatment option. In this study, local municipal wastewater facilities, hospital wastewater systems, and freshwater reservoirs were evaluated for the presence of lytic bacteriophages. These phages were isolated using conventional phage isolation techniques: water sample collection and processing, pre-enrichment with the host bacteria, the spot test, and the double-layer method. Plaques were selected according to their morphology and lytic activity on the target bacteria. Clinical isolates and reference strains belonging to the ESKAPE group were the targets during phage isolation. A total of 210 lytic plaque morphotypes with activity against ESKAPE strains were isolated from 22 water samples. Each isolate was qualitatively evaluated for its ability to inhibit the growth of its host strain. Thirty-one translucent plaques with apparent lytic activity were selected for purification. Of these, 87.1% were isolated from wastewater samples, and 12.9% were isolated from flowing freshwater. Specifically, the phages isolated from the freshwater samples targeted Staphylococcus aureus strains, and no phage from Enterococcus faecium strains was isolated. In conclusion, wastewater samples are a suitable source for the isolation of exogenous lytic phages; however, freshwater could be considered an alternative source for the isolation of lytic phages.
{"title":"Exploring Local Reservoirs for Bacteriophages with Therapeutic Potential against ESKAPE Pathogens","authors":"Alejandra Aidee Loera Piedra, Isamar Leticia Becerra Mejía, Brenda Luna Galicia, Sergio Francisco Martínez Díaz, Julieta Luna Herrera, Ma. Guadalupe Aguilera Arreola","doi":"10.3390/microbiolres15030098","DOIUrl":"https://doi.org/10.3390/microbiolres15030098","url":null,"abstract":"Bacteriophage therapy is a promising strategy used to treat antimicrobial-resistant or persistent bacterial infections. More recently, the clinical utility of bacteriophages has been rediscovered due to the rise of multi-drug resistance and their potential use in clinical practice as an additional treatment option. In this study, local municipal wastewater facilities, hospital wastewater systems, and freshwater reservoirs were evaluated for the presence of lytic bacteriophages. These phages were isolated using conventional phage isolation techniques: water sample collection and processing, pre-enrichment with the host bacteria, the spot test, and the double-layer method. Plaques were selected according to their morphology and lytic activity on the target bacteria. Clinical isolates and reference strains belonging to the ESKAPE group were the targets during phage isolation. A total of 210 lytic plaque morphotypes with activity against ESKAPE strains were isolated from 22 water samples. Each isolate was qualitatively evaluated for its ability to inhibit the growth of its host strain. Thirty-one translucent plaques with apparent lytic activity were selected for purification. Of these, 87.1% were isolated from wastewater samples, and 12.9% were isolated from flowing freshwater. Specifically, the phages isolated from the freshwater samples targeted Staphylococcus aureus strains, and no phage from Enterococcus faecium strains was isolated. In conclusion, wastewater samples are a suitable source for the isolation of exogenous lytic phages; however, freshwater could be considered an alternative source for the isolation of lytic phages.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141925501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-12DOI: 10.3390/microbiolres15030081
Faten Ben Chehida, W. Tombari, H. Gharsa, Youssef Rabia, Sana Ferhi, Maha Jrad, L. Messadi
The first Tunisian national molecular survey of coagulase-positive staphylococci (CoPS) isolated from dogs with pyoderma and otitis externa was conducted to evaluate the prevalence of CoPS and identify its phenotypic and genotypic diversities. A total of 99 out of the 195 samples collected from 39 sick dogs were identified across multiple sites as methicillin-susceptible CoPS belonging to the species S. pseudintermedius (64.4%), S. aureus (20.2%), S. coagulans (10.1%), and S. hyicus (5%). Fifteen sampled dogs carried more than one Staphylococcus species. Their antibiotic resistance and virulence factors were determined using conventional and molecular methods. Of the S. pseudintermedius isolates found, 17.4% were multidrug-resistant, whereas high rates of virulence genes were observed among the S. aureus isolates. On polystyrene surfaces, 75% of S. aureus isolates were biofilm producers, of which 15% were classified as strong producers. The capsular polysaccharide cap8 genotype was predominant among them. A MultiLocus Sequence Typing (MLST) analysis clustered the S.aureus isolates into five distinct sequence types (STs), with four assigned for the first time. Our findings highlight the spread of CoPS among diseased dogs and, especially, the emergence of S. hyicus, S. coagulans, multidrug-resistant S. pseudintermedius and S. aureus isolates with high genetic variability. The precise characterization of these strains, as well as their continuous monitoring, is necessary for the implementation of preventive strategies given the significant public health risk.
{"title":"New Insights into Molecular Characterization, Antimicrobial Resistance and Virulence Factors of Methicillin-Sensitive Coagulase-Positive Staphylococcus spp. from Dogs with Pyoderma and Otitis Externa","authors":"Faten Ben Chehida, W. Tombari, H. Gharsa, Youssef Rabia, Sana Ferhi, Maha Jrad, L. Messadi","doi":"10.3390/microbiolres15030081","DOIUrl":"https://doi.org/10.3390/microbiolres15030081","url":null,"abstract":"The first Tunisian national molecular survey of coagulase-positive staphylococci (CoPS) isolated from dogs with pyoderma and otitis externa was conducted to evaluate the prevalence of CoPS and identify its phenotypic and genotypic diversities. A total of 99 out of the 195 samples collected from 39 sick dogs were identified across multiple sites as methicillin-susceptible CoPS belonging to the species S. pseudintermedius (64.4%), S. aureus (20.2%), S. coagulans (10.1%), and S. hyicus (5%). Fifteen sampled dogs carried more than one Staphylococcus species. Their antibiotic resistance and virulence factors were determined using conventional and molecular methods. Of the S. pseudintermedius isolates found, 17.4% were multidrug-resistant, whereas high rates of virulence genes were observed among the S. aureus isolates. On polystyrene surfaces, 75% of S. aureus isolates were biofilm producers, of which 15% were classified as strong producers. The capsular polysaccharide cap8 genotype was predominant among them. A MultiLocus Sequence Typing (MLST) analysis clustered the S.aureus isolates into five distinct sequence types (STs), with four assigned for the first time. Our findings highlight the spread of CoPS among diseased dogs and, especially, the emergence of S. hyicus, S. coagulans, multidrug-resistant S. pseudintermedius and S. aureus isolates with high genetic variability. The precise characterization of these strains, as well as their continuous monitoring, is necessary for the implementation of preventive strategies given the significant public health risk.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141653067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-05DOI: 10.3390/microbiolres15030080
Amira Chroudi, Talita Nicolau, Narayan Sahoo, Ó. Carvalho, A. Zille, Samir Hamza, J. Padrão
Biomaterials consist of both natural and synthetic components, such as polymers, tissues, living cells, metals, and ceramics. Their purpose is focused on repairing or replacing malfunctioning living tissues and organs. Therefore, it is imperative to ensure the safety and sterility of biomaterials before any contact with living tissue. Ultraviolet (UV)-C irradiation for biomaterial disinfection has been considered due to the high recurrence rate of bacterial infections and to prevent resistance. Physical composition and surface properties and UV-C sensitivity of microorganisms can alter its efficacy. The main objective of this study was to evaluate the efficacy of UV-C in terms of microbial lethality and additional underlying factors contributing to its performance, namely the surface properties. For this purpose, twelve different strains were first screened, from which four microorganism species known to have the ability to cause nosocomial infections were further tested, namely Escherichia coli, Pseudomonas aeruginosa, Candida albicans, and Candida glabrata. These microorganisms were inoculated onto slides and disks of various bio contact surfaces, including glass (GLS), titanium (Ti), and poly ether etherketone (PEEK), and exposed to UV-C. The results demonstrate that bacterial pathogens on biomaterial surfaces respond differently to UV-C light exposure, and the bactericidal effect decreased in this order: glass, PEEK, and Ti (0.5 to 2.0 log reduction differences). P. aeruginosa ATCC 27853 on glass surfaces was reduced to an undetectable level after being exposed to 6.31 J.cm−2 of UV-C, displaying the highest reduction rate observed among all the tested microorganisms, 2.90 J−1.cm−3, compared to Ti and PEEK. Similarly, a higher reduction in C. glabrata ATCC 2001 was observed on glass; the modeled inhibition displayed a rate of 1.30 J−1.cm−3, the highest observed rate among yeast, compared to Ti and PEEK, displaying rates of 0.10 J−1.cm−3 and 0.04 J−1.cm−3, respectively. The inactivation rates were higher for less hydrophobic materials with smoother surfaces as compared to biomaterials with rougher surfaces.
{"title":"Predictive Modeling of UV-C Inactivation of Microorganisms in Glass, Titanium, and Polyether Ether Ketone","authors":"Amira Chroudi, Talita Nicolau, Narayan Sahoo, Ó. Carvalho, A. Zille, Samir Hamza, J. Padrão","doi":"10.3390/microbiolres15030080","DOIUrl":"https://doi.org/10.3390/microbiolres15030080","url":null,"abstract":"Biomaterials consist of both natural and synthetic components, such as polymers, tissues, living cells, metals, and ceramics. Their purpose is focused on repairing or replacing malfunctioning living tissues and organs. Therefore, it is imperative to ensure the safety and sterility of biomaterials before any contact with living tissue. Ultraviolet (UV)-C irradiation for biomaterial disinfection has been considered due to the high recurrence rate of bacterial infections and to prevent resistance. Physical composition and surface properties and UV-C sensitivity of microorganisms can alter its efficacy. The main objective of this study was to evaluate the efficacy of UV-C in terms of microbial lethality and additional underlying factors contributing to its performance, namely the surface properties. For this purpose, twelve different strains were first screened, from which four microorganism species known to have the ability to cause nosocomial infections were further tested, namely Escherichia coli, Pseudomonas aeruginosa, Candida albicans, and Candida glabrata. These microorganisms were inoculated onto slides and disks of various bio contact surfaces, including glass (GLS), titanium (Ti), and poly ether etherketone (PEEK), and exposed to UV-C. The results demonstrate that bacterial pathogens on biomaterial surfaces respond differently to UV-C light exposure, and the bactericidal effect decreased in this order: glass, PEEK, and Ti (0.5 to 2.0 log reduction differences). P. aeruginosa ATCC 27853 on glass surfaces was reduced to an undetectable level after being exposed to 6.31 J.cm−2 of UV-C, displaying the highest reduction rate observed among all the tested microorganisms, 2.90 J−1.cm−3, compared to Ti and PEEK. Similarly, a higher reduction in C. glabrata ATCC 2001 was observed on glass; the modeled inhibition displayed a rate of 1.30 J−1.cm−3, the highest observed rate among yeast, compared to Ti and PEEK, displaying rates of 0.10 J−1.cm−3 and 0.04 J−1.cm−3, respectively. The inactivation rates were higher for less hydrophobic materials with smoother surfaces as compared to biomaterials with rougher surfaces.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141674442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.3390/microbiolres15030079
Brianda Karina Félix-Sicairos, R. Martínez-Martínez, S. Aranda-Romo, Roberto González-Amaro, M. Salgado-Bustamante, N. V. Zavala-Alonso, Á. Alpuche-Solís
Bacteriotherapy is a promising option in addressing dental caries, a persistent global public health challenge with multifactorial origin, including dysbiosis. Despite the exploration of various probiotics, outcomes remain inconclusive. Objective: This study aimed to assess the inhibitory potential of L. reuteri and other potential probiotics like S. salivarius and S. oralis on the growth, adhesion, colonization, and viability of major cariogenic pathogens, comparing their probiotic efficacy. Methods: An in vitro experimental study was conducted, encompassing direct competition assays in solid and liquid co-culture tests and the characterization of adhesion to dental enamel and cell viability by life or death assay. Results: L. reuteri exhibited the significant inhibition of S. sobrinus and S. mutans growth in both solid and liquid cultures, with statistically notable differences. Scanning electron microscopy and confocal microscopy demonstrated reduced cariogenic biofilm formation when combined with L. reuteri, corroborated by diminished bacterial viability and decreased dental enamel coverage. These findings underscore L. reuteri’s potential as an effective agent in caries prevention. Conclusion: The study suggests L. reuteri could serve as an effective probiotic in bacteriotherapy against dental caries. It displayed substantial inhibitory activity in vitro against cariogenic bacteria, impeding biofilm formation and adhesion, thereby impacting cell viability.
细菌疗法是解决龋齿问题的一个很有前景的选择,龋齿是一个长期存在的全球性公共卫生挑战,其根源是多因素的,包括菌群失调。尽管对各种益生菌进行了研究,但结果仍不确定。研究目的本研究旨在评估 L. reuteri 和其他潜在益生菌(如唾液球菌和口腔球菌)对主要致龋病原体的生长、粘附、定植和存活的抑制潜力,并比较它们的益生菌功效。方法:体外实验研究进行了一项体外实验研究,包括固体和液体共培养试验中的直接竞争试验,以及牙釉质粘附性和细胞存活率的生死试验。研究结果在固体和液体培养物中,L. reuteri 对 S. sobrinus 和 S. mutans 的生长都有明显的抑制作用,在统计学上差异显著。扫描电子显微镜和共聚焦显微镜显示,与 L. reuteri 结合使用可减少致龋生物膜的形成,细菌存活率降低和牙釉质覆盖率降低也证实了这一点。这些发现凸显了L. reuteri作为一种有效防龋剂的潜力。结论:研究表明,L. reuteri 可作为一种有效的益生菌用于龋齿的细菌疗法。它在体外对致癌细菌有很强的抑制作用,能阻碍生物膜的形成和粘附,从而影响细胞的活力。
{"title":"Limosilactobacillus reuteri and Its Probiotic Potential against Cariogenic Bacteria","authors":"Brianda Karina Félix-Sicairos, R. Martínez-Martínez, S. Aranda-Romo, Roberto González-Amaro, M. Salgado-Bustamante, N. V. Zavala-Alonso, Á. Alpuche-Solís","doi":"10.3390/microbiolres15030079","DOIUrl":"https://doi.org/10.3390/microbiolres15030079","url":null,"abstract":"Bacteriotherapy is a promising option in addressing dental caries, a persistent global public health challenge with multifactorial origin, including dysbiosis. Despite the exploration of various probiotics, outcomes remain inconclusive. Objective: This study aimed to assess the inhibitory potential of L. reuteri and other potential probiotics like S. salivarius and S. oralis on the growth, adhesion, colonization, and viability of major cariogenic pathogens, comparing their probiotic efficacy. Methods: An in vitro experimental study was conducted, encompassing direct competition assays in solid and liquid co-culture tests and the characterization of adhesion to dental enamel and cell viability by life or death assay. Results: L. reuteri exhibited the significant inhibition of S. sobrinus and S. mutans growth in both solid and liquid cultures, with statistically notable differences. Scanning electron microscopy and confocal microscopy demonstrated reduced cariogenic biofilm formation when combined with L. reuteri, corroborated by diminished bacterial viability and decreased dental enamel coverage. These findings underscore L. reuteri’s potential as an effective agent in caries prevention. Conclusion: The study suggests L. reuteri could serve as an effective probiotic in bacteriotherapy against dental caries. It displayed substantial inhibitory activity in vitro against cariogenic bacteria, impeding biofilm formation and adhesion, thereby impacting cell viability.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141681930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.3390/microbiolres15030078
F. Kouadri
Water scarcity is a major agricultural issue in most arid and semi-arid regions of the world. Alternative water supplies, such as the reuse of wastewater for agricultural irrigation, have been introduced. However, little is known about their impact on the soil and rhizosphere microbiomes that receive irrigation. Therefore, this work evaluates the impact of treated wastewater (TWW) irrigation on the soil and rhizosphere bacterial communities of date palms in Al Madinah, Saudi Arabia. In this study, metagenomic DNA from the rhizosphere of the date palm was sequenced using Illumina high-throughput sequencing. According to the observed OTUs, Chao1 richness estimations, and Shannon diversity values, soils from groundwater-irrigated date palms showed higher microbial diversity than did soils from TWW-irrigated date palms. A total of 569 OTUs were generated; most of them (97.3%) were assigned into 15 different phyla, whereas 2.7% were marked as unclassified. DNA sequence analysis of the WWT-irrigated rhizosphere showed that the most abundant phyla were Firmicutes (43.6%), Bacteroidetes (17.3%), Proteobacteria (15.2%), and Actinobacteria (14.6%), representing more than 90.7% of the total community, while the soil of the rhizosphere irrigated with GW was dominated by Actinobacteria (44.1%), Proteobacteria (23.4%), Firmicutes (15.5%), and Gemmatimonadetes (4.9%). The most frequently observed species in the two soils were also different. The dominant species in TWW-irrigated soil was Planococcus plakortidis, which is prevalent in saline and moderately saline habitats and can play an important ecological role. The GW-irrigated rhizosphere exhibited higher levels of biocontrol bacteria, particularly Nocardioides mesophilus. These results provide a comprehensive understanding and insights into the population dynamics and microbiome of date palm rhizosphere. The findings show that the irrigation water quality has a significant impact on the microbiome composition. Identifying the microbial diversity is the first step toward determining the best way to use TWW in irrigation.
{"title":"Comparative High-Throughput Sequencing Analysis of the Bacterial Community Associated with the Rhizosphere of Date Palm (Phoenix dactyllifera L.) Irrigated with Treated Wastewater and Groundwater","authors":"F. Kouadri","doi":"10.3390/microbiolres15030078","DOIUrl":"https://doi.org/10.3390/microbiolres15030078","url":null,"abstract":"Water scarcity is a major agricultural issue in most arid and semi-arid regions of the world. Alternative water supplies, such as the reuse of wastewater for agricultural irrigation, have been introduced. However, little is known about their impact on the soil and rhizosphere microbiomes that receive irrigation. Therefore, this work evaluates the impact of treated wastewater (TWW) irrigation on the soil and rhizosphere bacterial communities of date palms in Al Madinah, Saudi Arabia. In this study, metagenomic DNA from the rhizosphere of the date palm was sequenced using Illumina high-throughput sequencing. According to the observed OTUs, Chao1 richness estimations, and Shannon diversity values, soils from groundwater-irrigated date palms showed higher microbial diversity than did soils from TWW-irrigated date palms. A total of 569 OTUs were generated; most of them (97.3%) were assigned into 15 different phyla, whereas 2.7% were marked as unclassified. DNA sequence analysis of the WWT-irrigated rhizosphere showed that the most abundant phyla were Firmicutes (43.6%), Bacteroidetes (17.3%), Proteobacteria (15.2%), and Actinobacteria (14.6%), representing more than 90.7% of the total community, while the soil of the rhizosphere irrigated with GW was dominated by Actinobacteria (44.1%), Proteobacteria (23.4%), Firmicutes (15.5%), and Gemmatimonadetes (4.9%). The most frequently observed species in the two soils were also different. The dominant species in TWW-irrigated soil was Planococcus plakortidis, which is prevalent in saline and moderately saline habitats and can play an important ecological role. The GW-irrigated rhizosphere exhibited higher levels of biocontrol bacteria, particularly Nocardioides mesophilus. These results provide a comprehensive understanding and insights into the population dynamics and microbiome of date palm rhizosphere. The findings show that the irrigation water quality has a significant impact on the microbiome composition. Identifying the microbial diversity is the first step toward determining the best way to use TWW in irrigation.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141685941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.3390/microbiolres15030076
Adriana Lemos de Sousa Neto, Thalita Campos, C. Mendes-Rodrigues, Reginaldo dos Santos Pedroso, D. V. D. B. Röder
During the pandemic of COVID-19, the rates of bloodstream infection associated with venous catheter in patients infected with the disease admitted to an intensive care unit rose significantly. In this study, we evaluated the occurrence of bloodstream infections in patients with SARS-CoV-2 and the variables that made the patients more susceptible to the catheter-associated bloodstream infection (CABSI). Blood culture results from patients interned between March 2020 and December 2021 (n= 109) were collected electronically from the hospital information system and then analyzed. The following variables presented statistical relevance after an adjusted model as follows: obesity (p = 0.003) and time of use of catheter before infection (p = 0.019). In conclusion, patients with shorter catheter use time and obesity had higher incidence of CABSI.
{"title":"Factors Influencing Central Venous Catheter-Associated Bloodstream Infections in COVID-19 Patients","authors":"Adriana Lemos de Sousa Neto, Thalita Campos, C. Mendes-Rodrigues, Reginaldo dos Santos Pedroso, D. V. D. B. Röder","doi":"10.3390/microbiolres15030076","DOIUrl":"https://doi.org/10.3390/microbiolres15030076","url":null,"abstract":"During the pandemic of COVID-19, the rates of bloodstream infection associated with venous catheter in patients infected with the disease admitted to an intensive care unit rose significantly. In this study, we evaluated the occurrence of bloodstream infections in patients with SARS-CoV-2 and the variables that made the patients more susceptible to the catheter-associated bloodstream infection (CABSI). Blood culture results from patients interned between March 2020 and December 2021 (n= 109) were collected electronically from the hospital information system and then analyzed. The following variables presented statistical relevance after an adjusted model as follows: obesity (p = 0.003) and time of use of catheter before infection (p = 0.019). In conclusion, patients with shorter catheter use time and obesity had higher incidence of CABSI.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141687385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.3390/microbiolres15030077
A. Valencia-Botín, Ismael F. Chávez-Díaz, Florentina Zurita-Martínez, Allan Tejeda-Ortega, L. Zelaya-Molina
Tequila vinasse, a byproduct of the tequila industry, is frequently discharged into water bodies or agricultural fields, posing significant ecological and human health risks. Bacterial communities that inhabit these agricultural fields have developed mechanisms to utilize tequila vinasse as a potential nutrient source and to promote plant growth. In this study, strains from the phyla Actinomycetota and Pseudomonadota were isolated from agricultural fields irrigated with tequila vinasse for 2, 10, and 14 years in Jalisco, Mexico. The results showed that strains of Terrabacter, Azotobacter, Agromyces, Prescottella, and Leifsonia tolerate high concentrations of tequila vinasse and promote maize seedling growth in the presence of tequila vinasse. Additionally, some of the strains solubilize potassium and produce siderophores, cellulase, protease, lipase, and esterase. The strains Terrabacter sp. WCNS1C, Azotobacter sp. WCNS1D, and Azotobacter sp. WCNS2A have potential applications in the bioremediation of tequila vinasse in agricultural fields discharged with tequila vinasse.
{"title":"Plant Growth-Promoting and Tequila Vinasse-Resistant Bacterial Strains","authors":"A. Valencia-Botín, Ismael F. Chávez-Díaz, Florentina Zurita-Martínez, Allan Tejeda-Ortega, L. Zelaya-Molina","doi":"10.3390/microbiolres15030077","DOIUrl":"https://doi.org/10.3390/microbiolres15030077","url":null,"abstract":"Tequila vinasse, a byproduct of the tequila industry, is frequently discharged into water bodies or agricultural fields, posing significant ecological and human health risks. Bacterial communities that inhabit these agricultural fields have developed mechanisms to utilize tequila vinasse as a potential nutrient source and to promote plant growth. In this study, strains from the phyla Actinomycetota and Pseudomonadota were isolated from agricultural fields irrigated with tequila vinasse for 2, 10, and 14 years in Jalisco, Mexico. The results showed that strains of Terrabacter, Azotobacter, Agromyces, Prescottella, and Leifsonia tolerate high concentrations of tequila vinasse and promote maize seedling growth in the presence of tequila vinasse. Additionally, some of the strains solubilize potassium and produce siderophores, cellulase, protease, lipase, and esterase. The strains Terrabacter sp. WCNS1C, Azotobacter sp. WCNS1D, and Azotobacter sp. WCNS2A have potential applications in the bioremediation of tequila vinasse in agricultural fields discharged with tequila vinasse.","PeriodicalId":43788,"journal":{"name":"Microbiology Research","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141684583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}