Analytical fitting of \(\gamma \)–ray photopeaks in germanium cross strip detectors

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Experimental Astronomy Pub Date : 2023-10-24 DOI:10.1007/s10686-023-09914-8
Steven E. Boggs, Sean N. Pike
{"title":"Analytical fitting of \\(\\gamma \\)–ray photopeaks in germanium cross strip detectors","authors":"Steven E. Boggs,&nbsp;Sean N. Pike","doi":"10.1007/s10686-023-09914-8","DOIUrl":null,"url":null,"abstract":"<div><p>In an ideal germanium detector, fully-absorbed monoenergetic <span>\\(\\gamma \\)</span>–rays will appear in the measured spectrum as a narrow peak, broadened into a Gaussian of width determined only by the statistical properties of charge cloud generation and the electronic noise of the readout electronics. Multielectrode detectors complicate this picture. Broadening of the charge clouds as they drift through the detector will lead to charge sharing between neighboring electrodes and, inevitably, low-energy tails on the photopeak spectra. We simulate charge sharing in our germanium cross strip detectors in order to reproduce the low-energy tails due to charge sharing. Our goal is to utilize these simulated spectra to develop an analytical fit (shape function) for the spectral lines that provides a robust and high-quality fit to the spectral profile, reliably reproduces the interaction energy, noise width, and the number of counts in both the true photopeak and the low-energy tail, and minimizes the number of additional parameters. Accurate modeling of the detailed line profiles is crucial for both calibration of the detectors as well as scientific interpretation of measured spectra.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 2-3","pages":"403 - 420"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-023-09914-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-023-09914-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In an ideal germanium detector, fully-absorbed monoenergetic \(\gamma \)–rays will appear in the measured spectrum as a narrow peak, broadened into a Gaussian of width determined only by the statistical properties of charge cloud generation and the electronic noise of the readout electronics. Multielectrode detectors complicate this picture. Broadening of the charge clouds as they drift through the detector will lead to charge sharing between neighboring electrodes and, inevitably, low-energy tails on the photopeak spectra. We simulate charge sharing in our germanium cross strip detectors in order to reproduce the low-energy tails due to charge sharing. Our goal is to utilize these simulated spectra to develop an analytical fit (shape function) for the spectral lines that provides a robust and high-quality fit to the spectral profile, reliably reproduces the interaction energy, noise width, and the number of counts in both the true photopeak and the low-energy tail, and minimizes the number of additional parameters. Accurate modeling of the detailed line profiles is crucial for both calibration of the detectors as well as scientific interpretation of measured spectra.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锗交叉带探测器中的(γ)射线光峰的分析拟合
在一个理想的锗探测器中,完全吸收的单能(γ)射线在测量光谱中将显示为一个窄峰,其宽度仅由电荷云产生的统计特性和读出电子设备的电子噪声决定。多电极探测器使情况更加复杂。电荷云在探测器中漂移时会变宽,这将导致相邻电极之间的电荷共享,不可避免地会在光电峰光谱上出现低能尾。我们模拟了锗交叉带探测器中的电荷共享,以重现电荷共享导致的低能尾迹。我们的目标是利用这些模拟光谱来开发光谱线的分析拟合(形状函数),它能对光谱剖面进行稳健而高质量的拟合,可靠地再现真实光峰和低能尾的相互作用能量、噪声宽度和计数数量,并最大限度地减少附加参数的数量。精确的详细线剖面建模对于探测器的校准和测量光谱的科学解释都至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Astronomy
Experimental Astronomy 地学天文-天文与天体物理
CiteScore
5.30
自引率
3.30%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments. Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields. Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.
期刊最新文献
CNNCat: categorizing high-energy photons in a Compton/Pair telescope with convolutional neural networks Reflectivity test method of x-ray optics at the 100-m x-ray test facility Ground calibration and network of the first CATCH pathfinder Simulations and machine learning models for cosmic-ray short-term variations and test-mass charging on board LISA The ground calibration of the HERMES-Pathfinder payload flight models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1