首页 > 最新文献

Experimental Astronomy最新文献

英文 中文
Receiver design for the REACH global 21-cm signal experiment REACH全球21cm信号实验接收机设计
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-17 DOI: 10.1007/s10686-024-09975-3
Ian L. V. Roque, Nima Razavi-Ghods, Steven H. Carey, John A. Ely, Will Handley, Alessio Magro, Riccardo Chiello, Tian Huang, P. Alexander, D. Anstey, G. Bernardi, H. T. J. Bevins, J. Cavillot, W. Croukamp, J. Cumner, E. de Lera Acedo, D. I. L. de Villiers, A. Fialkov, T. Gessey-Jones, Q. Gueuning, A. T. Josaitis, G. Kulkarni, S. A. K. Leeney, R. Maiolino, P. D. Meerburg, S. Mittal, M. Pagano, S. Pegwal, C. Pieterse, J. R. Pritchard, A. Saxena, K. H. Scheutwinkel, P. Scott, E. Shen, P. H. Sims, O. Smirnov, M. Spinelli, K. Zarb-Adami

We detail the REACH radiometric system designed to enable measurements of the 21-cm neutral hydrogen line. Included is the radiometer architecture and end-to-end system simulations as well as a discussion of the challenges intrinsic to highly-calibratable system development. Following this, we share laboratory results based on the calculation of noise wave parameters utilising an over-constrained least squares approach. For five hours of integration on a custom-made source with comparable impedance to that of the antenna used in the field, we demonstrate a calibration RMSE of 80 mK. This paper therefore documents the state of the calibrator and data analysis in December 2022 in Cambridge before shipping to South Africa.

我们详细介绍了设计用于测量21厘米中性氢线的REACH辐射测量系统。包括辐射计架构和端到端系统模拟,以及对高可校准系统开发固有挑战的讨论。在此之后,我们分享了基于使用过约束最小二乘方法计算噪声波参数的实验室结果。在与现场使用的天线阻抗相当的定制源上集成五个小时,我们展示了80 mK的校准RMSE。因此,本文记录了2022年12月在剑桥运输到南非之前的校定器和数据分析的状态。
{"title":"Receiver design for the REACH global 21-cm signal experiment","authors":"Ian L. V. Roque,&nbsp;Nima Razavi-Ghods,&nbsp;Steven H. Carey,&nbsp;John A. Ely,&nbsp;Will Handley,&nbsp;Alessio Magro,&nbsp;Riccardo Chiello,&nbsp;Tian Huang,&nbsp;P. Alexander,&nbsp;D. Anstey,&nbsp;G. Bernardi,&nbsp;H. T. J. Bevins,&nbsp;J. Cavillot,&nbsp;W. Croukamp,&nbsp;J. Cumner,&nbsp;E. de Lera Acedo,&nbsp;D. I. L. de Villiers,&nbsp;A. Fialkov,&nbsp;T. Gessey-Jones,&nbsp;Q. Gueuning,&nbsp;A. T. Josaitis,&nbsp;G. Kulkarni,&nbsp;S. A. K. Leeney,&nbsp;R. Maiolino,&nbsp;P. D. Meerburg,&nbsp;S. Mittal,&nbsp;M. Pagano,&nbsp;S. Pegwal,&nbsp;C. Pieterse,&nbsp;J. R. Pritchard,&nbsp;A. Saxena,&nbsp;K. H. Scheutwinkel,&nbsp;P. Scott,&nbsp;E. Shen,&nbsp;P. H. Sims,&nbsp;O. Smirnov,&nbsp;M. Spinelli,&nbsp;K. Zarb-Adami","doi":"10.1007/s10686-024-09975-3","DOIUrl":"10.1007/s10686-024-09975-3","url":null,"abstract":"<div><p>We detail the REACH radiometric system designed to enable measurements of the 21-cm neutral hydrogen line. Included is the radiometer architecture and end-to-end system simulations as well as a discussion of the challenges intrinsic to highly-calibratable system development. Following this, we share laboratory results based on the calculation of noise wave parameters utilising an over-constrained least squares approach. For five hours of integration on a custom-made source with comparable impedance to that of the antenna used in the field, we demonstrate a calibration RMSE of 80 mK. This paper therefore documents the state of the calibrator and data analysis in December 2022 in Cambridge before shipping to South Africa.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09975-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acoustic positioning for deep sea neutrino telescopes with a system of piezo sensors integrated into glass spheres 用集成在玻璃球中的压电传感器系统对深海中微子望远镜进行声学定位
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-04 DOI: 10.1007/s10686-024-09971-7
A. Albert, S. Alves, M. André, M. Ardid, S. Ardid, J.-J. Aubert, J. Aublin, B. Baret, S. Basa, Y. Becherini, B. Belhorma, M. Bendahman, F. Benfenati, V. Bertin, S. Biagi, J. Boumaaza, M. Bouta, M. C. Bouwhuis, H. Brânzaş, R. Bruijn, J. Brunner, J. Busto, B. Caiffi, D. Calvo, S. Campion, A. Capone, F. Carenini, J. Carr, V. Carretero, S. Celli, L. Cerisy, M. Chabab, R. Cherkaoui El Moursli, T. Chiarusi, M. Circella, J. A. B. Coelho, A. Coleiro, R. Coniglione, P. Coyle, A. Creusot, A. F. Díaz, B. De Martino, C. Distefano, I. Di Palma, C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, A. Eddymaoui, T. van Eeden, D. van Eijk, S. El Hedri, N. El Khayati, A. Enzenhöfer, P. Fermani, G. Ferrara, F. Filippini, L. Fusco, S. Gagliardini, J. García, C. Gatius Oliver, P. Gay, N. Geißelbrecht, H. Glotin, R. Gozzini, R. Gracia Ruiz, K. Graf, C. Guidi, L. Haegel, H. van Haren, A. J. Heijboer, Y. Hello, L. Hennig, J. J. Hernández-Rey, J. Hößl, F. Huang, G. Illuminati, B. Jisse-Jung, M. de Jong, P. de Jong, M. Kadler, O. Kalekin, U. Katz, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, M. Lamoureux, A. Lazo, D. Lefèvre, E. Leonora, G. Levi, S. Le Stum, S. Loucatos, J. Manczak, M. Marcelin, A. Margiotta, A. Marinelli, J. A. Martínez-Mora, P. Migliozzi, A. Moussa, R. Muller, S. Navas, E. Nezri, B. Ó Fearraigh, E. Oukacha, A. Păun, G. E. Păvălaş, S. Peña-Martínez, M. Perrin-Terrin, P. Piattelli, C. Poirè, V. Popa, T. Pradier, N. Randazzo, D. Real, G. Riccobene, A. Romanov, A. Sánchez-Losa, A. Saina, F. Salesa Greus, D. F. E. Samtleben, M. Sanguineti, P. Sapienza, F. Schüssler, J. Seneca, M. Spurio, Th. Stolarczyk, M. Taiuti, Y. Tayalati, B. Vallage, G. Vannoye, V. Van Elewyck, S. Viola, D. Vivolo, J. Wilms, S. Zavatarelli, A. Zegarelli, J. D. Zornoza, J. Zúñiga

Position calibration in the deep sea is typically done by means of acoustic multilateration using three or more acoustic emitters installed at known positions. Rather than using hydrophones as receivers that are exposed to the ambient pressure, the sound signals can be coupled to piezo ceramics glued to the inside of existing containers for electronics or measuring instruments of a deep sea infrastructure. The ANTARES neutrino telescope operated from 2006 until 2022 in the Mediterranean Sea at a depth exceeding 2000 m. It comprised nearly 900 glass spheres with 432 mm diameter and 15 mm thickness, equipped with photomultiplier tubes to detect Cherenkov light from tracks of charged elementary particles. In an experimental setup within ANTARES, piezo sensors have been glued to the inside of such – otherwise empty – glass spheres. These sensors recorded signals from acoustic emitters with frequencies from 46545 to 60235 Hz. Two waves propagating through the glass sphere are found as a result of the excitation by the waves in the water. These can be qualitatively associated with symmetric and asymmetric Lamb-like waves of zeroth order: a fast (early) one with (varvec{v_e approx 5,{textbf {mm}}/mu text {s}}) and a slow (late) one with (varvec{v_ell approx ,2,{textbf {mm}}/mu text {s}}). Taking these findings into account improves the accuracy of the position calibration. The results can be transferred to the KM3NeT neutrino telescope, currently under construction at multiple sites in the Mediterranean Sea, for which the concept of piezo sensors glued to the inside of glass spheres has been adapted for monitoring the positions of the photomultiplier tubes.

在深海中,位置校准通常是通过安装在已知位置的三个或更多声发射器的声倍增法完成的。与将水听器作为暴露在环境压力下的接收器相比,声音信号可以与粘在现有电子设备或深海基础设施测量仪器容器内部的压电陶瓷相耦合。从2006年到2022年,ANTARES中微子望远镜在地中海2000米深处运行。它由近900个直径432毫米、厚度15毫米的玻璃球组成,配备了光电倍增管,用于探测带电基本粒子轨迹产生的切伦科夫光。在ANTARES的一个实验装置中,压电传感器被粘在这样的玻璃球的内部——否则就是空的。这些传感器记录频率从46545到60235赫兹的声发射器发出的信号。通过玻璃球传播的两种波是由水中的波激发的结果。这些可以定性地与零阶的对称和非对称兰姆波相关联:快速(早期)的有(varvec{v_e approx 5,{textbf {mm}}/mu text {s}}),缓慢(晚期)的有(varvec{v_ell approx ,2,{textbf {mm}}/mu text {s}})。考虑到这些发现,可以提高位置校准的准确性。结果可以转移到目前正在地中海多个地点建造的KM3NeT中微子望远镜上,为此,将压电传感器粘在玻璃球内部的概念已被用于监测光电倍增管的位置。
{"title":"Acoustic positioning for deep sea neutrino telescopes with a system of piezo sensors integrated into glass spheres","authors":"A. Albert,&nbsp;S. Alves,&nbsp;M. André,&nbsp;M. Ardid,&nbsp;S. Ardid,&nbsp;J.-J. Aubert,&nbsp;J. Aublin,&nbsp;B. Baret,&nbsp;S. Basa,&nbsp;Y. Becherini,&nbsp;B. Belhorma,&nbsp;M. Bendahman,&nbsp;F. Benfenati,&nbsp;V. Bertin,&nbsp;S. Biagi,&nbsp;J. Boumaaza,&nbsp;M. Bouta,&nbsp;M. C. Bouwhuis,&nbsp;H. Brânzaş,&nbsp;R. Bruijn,&nbsp;J. Brunner,&nbsp;J. Busto,&nbsp;B. Caiffi,&nbsp;D. Calvo,&nbsp;S. Campion,&nbsp;A. Capone,&nbsp;F. Carenini,&nbsp;J. Carr,&nbsp;V. Carretero,&nbsp;S. Celli,&nbsp;L. Cerisy,&nbsp;M. Chabab,&nbsp;R. Cherkaoui El Moursli,&nbsp;T. Chiarusi,&nbsp;M. Circella,&nbsp;J. A. B. Coelho,&nbsp;A. Coleiro,&nbsp;R. Coniglione,&nbsp;P. Coyle,&nbsp;A. Creusot,&nbsp;A. F. Díaz,&nbsp;B. De Martino,&nbsp;C. Distefano,&nbsp;I. Di Palma,&nbsp;C. Donzaud,&nbsp;D. Dornic,&nbsp;D. Drouhin,&nbsp;T. Eberl,&nbsp;A. Eddymaoui,&nbsp;T. van Eeden,&nbsp;D. van Eijk,&nbsp;S. El Hedri,&nbsp;N. El Khayati,&nbsp;A. Enzenhöfer,&nbsp;P. Fermani,&nbsp;G. Ferrara,&nbsp;F. Filippini,&nbsp;L. Fusco,&nbsp;S. Gagliardini,&nbsp;J. García,&nbsp;C. Gatius Oliver,&nbsp;P. Gay,&nbsp;N. Geißelbrecht,&nbsp;H. Glotin,&nbsp;R. Gozzini,&nbsp;R. Gracia Ruiz,&nbsp;K. Graf,&nbsp;C. Guidi,&nbsp;L. Haegel,&nbsp;H. van Haren,&nbsp;A. J. Heijboer,&nbsp;Y. Hello,&nbsp;L. Hennig,&nbsp;J. J. Hernández-Rey,&nbsp;J. Hößl,&nbsp;F. Huang,&nbsp;G. Illuminati,&nbsp;B. Jisse-Jung,&nbsp;M. de Jong,&nbsp;P. de Jong,&nbsp;M. Kadler,&nbsp;O. Kalekin,&nbsp;U. Katz,&nbsp;A. Kouchner,&nbsp;I. Kreykenbohm,&nbsp;V. Kulikovskiy,&nbsp;R. Lahmann,&nbsp;M. Lamoureux,&nbsp;A. Lazo,&nbsp;D. Lefèvre,&nbsp;E. Leonora,&nbsp;G. Levi,&nbsp;S. Le Stum,&nbsp;S. Loucatos,&nbsp;J. Manczak,&nbsp;M. Marcelin,&nbsp;A. Margiotta,&nbsp;A. Marinelli,&nbsp;J. A. Martínez-Mora,&nbsp;P. Migliozzi,&nbsp;A. Moussa,&nbsp;R. Muller,&nbsp;S. Navas,&nbsp;E. Nezri,&nbsp;B. Ó Fearraigh,&nbsp;E. Oukacha,&nbsp;A. Păun,&nbsp;G. E. Păvălaş,&nbsp;S. Peña-Martínez,&nbsp;M. Perrin-Terrin,&nbsp;P. Piattelli,&nbsp;C. Poirè,&nbsp;V. Popa,&nbsp;T. Pradier,&nbsp;N. Randazzo,&nbsp;D. Real,&nbsp;G. Riccobene,&nbsp;A. Romanov,&nbsp;A. Sánchez-Losa,&nbsp;A. Saina,&nbsp;F. Salesa Greus,&nbsp;D. F. E. Samtleben,&nbsp;M. Sanguineti,&nbsp;P. Sapienza,&nbsp;F. Schüssler,&nbsp;J. Seneca,&nbsp;M. Spurio,&nbsp;Th. Stolarczyk,&nbsp;M. Taiuti,&nbsp;Y. Tayalati,&nbsp;B. Vallage,&nbsp;G. Vannoye,&nbsp;V. Van Elewyck,&nbsp;S. Viola,&nbsp;D. Vivolo,&nbsp;J. Wilms,&nbsp;S. Zavatarelli,&nbsp;A. Zegarelli,&nbsp;J. D. Zornoza,&nbsp;J. Zúñiga","doi":"10.1007/s10686-024-09971-7","DOIUrl":"10.1007/s10686-024-09971-7","url":null,"abstract":"<div><p>Position calibration in the deep sea is typically done by means of acoustic multilateration using three or more acoustic emitters installed at known positions. Rather than using hydrophones as receivers that are exposed to the ambient pressure, the sound signals can be coupled to piezo ceramics glued to the inside of existing containers for electronics or measuring instruments of a deep sea infrastructure. The ANTARES neutrino telescope operated from 2006 until 2022 in the Mediterranean Sea at a depth exceeding <b>2000 m</b>. It comprised nearly 900 glass spheres with <b>432 mm</b> diameter and <b>15 mm</b> thickness, equipped with photomultiplier tubes to detect Cherenkov light from tracks of charged elementary particles. In an experimental setup within ANTARES, piezo sensors have been glued to the inside of such – otherwise empty – glass spheres. These sensors recorded signals from acoustic emitters with frequencies from <b>46545 to 60235 Hz</b>. Two waves propagating through the glass sphere are found as a result of the excitation by the waves in the water. These can be qualitatively associated with symmetric and asymmetric Lamb-like waves of zeroth order: a fast (early) one with <span>(varvec{v_e approx 5,{textbf {mm}}/mu text {s}})</span> and a slow (late) one with <span>(varvec{v_ell approx ,2,{textbf {mm}}/mu text {s}})</span>. Taking these findings into account improves the accuracy of the position calibration. The results can be transferred to the KM3NeT neutrino telescope, currently under construction at multiple sites in the Mediterranean Sea, for which the concept of piezo sensors glued to the inside of glass spheres has been adapted for monitoring the positions of the photomultiplier tubes.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09971-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing hole trap production due to proton irradiation in germanium cross-strip detectors.
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-01-01 Epub Date: 2025-01-24 DOI: 10.1007/s10686-025-09978-8
Sean N Pike, Steven E Boggs, Gabriel Brewster, Sophia E Haight, Jarred M Roberts, Albert Y Shih, Joanna Szornel, John A Tomsick, Andreas Zoglauer

We present an investigation into the effects of high-energy proton damage on charge trapping in germanium cross-strip detectors with the goal of accomplishing three important measurements. First, we calibrated and characterized the spectral resolution of a spare COSI-balloon detector in order to determine the effects of intrinsic trapping, finding that electron trapping due to impurities dominates over hole trapping in the undamaged detector. Second, we performed two rounds of proton irradiation of the detector in order to quantify, for the first time, the rate at which charge traps are produced by proton irradiation. We find that the product of the hole trap density and cross-sectional area, [ n σ ] h , follows a linear relationship with the proton fluence, F p , with a slope of ( 5.4 ± 0.4 ) × 10 - 11 cm / p + . Third, by utilizing our measurements of physical trapping parameters, we performed calibrations which corrected for the effects of trapping and mitigated degradation to the spectral resolution of the detector.

{"title":"Characterizing hole trap production due to proton irradiation in germanium cross-strip detectors.","authors":"Sean N Pike, Steven E Boggs, Gabriel Brewster, Sophia E Haight, Jarred M Roberts, Albert Y Shih, Joanna Szornel, John A Tomsick, Andreas Zoglauer","doi":"10.1007/s10686-025-09978-8","DOIUrl":"https://doi.org/10.1007/s10686-025-09978-8","url":null,"abstract":"<p><p>We present an investigation into the effects of high-energy proton damage on charge trapping in germanium cross-strip detectors with the goal of accomplishing three important measurements. First, we calibrated and characterized the spectral resolution of a spare COSI-balloon detector in order to determine the effects of intrinsic trapping, finding that electron trapping due to impurities dominates over hole trapping in the undamaged detector. Second, we performed two rounds of proton irradiation of the detector in order to quantify, for the first time, the rate at which charge traps are produced by proton irradiation. We find that the product of the hole trap density and cross-sectional area, <math> <msub><mrow><mo>[</mo> <mi>n</mi> <mi>σ</mi> <mo>]</mo></mrow> <mtext>h</mtext></msub> </math> , follows a linear relationship with the proton fluence, <math><msub><mi>F</mi> <mtext>p</mtext></msub> </math> , with a slope of <math> <mrow><mrow><mo>(</mo> <mn>5.4</mn> <mo>±</mo> <mn>0.4</mn> <mo>)</mo></mrow> <mo>×</mo> <msup><mn>10</mn> <mrow><mo>-</mo> <mn>11</mn></mrow> </msup> <mspace></mspace> <mrow><mi>cm</mi> <mo>/</mo> <msup><mi>p</mi> <mo>+</mo></msup> </mrow> </mrow> </math> . Third, by utilizing our measurements of physical trapping parameters, we performed calibrations which corrected for the effects of trapping and mitigated degradation to the spectral resolution of the detector.</p>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":"8"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143045335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ground testing and calibration of focal plane detector flight model on board the first pathfinder of CATCH CATCH第一探路者机载焦平面探测器飞行模型地面测试与标定
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-12-30 DOI: 10.1007/s10686-024-09966-4
Panping Li, Kang Zhao, Xiangyang Wen, Zhengwei Li, Min Gao, Qian-Qing Yin, Lian Tao, Qingchang Zhao, Yusa Wang, Zijian Zhao, Shujie Zhao, Yiming Huang, Jingyu Xiao, Yifan Zhang, Bin Meng, Sheng Yang, Wen Chen, Heng Zhou, Yong Yang, Huilin He, Ruican Ma, Shuai Yang, Guoli Huang, YaJun Li, Jiewei Cao, Shu-Jin Hou, Xiaojing Liu, Jinzhou Wang, Liang Sun, Shuang-Nan Zhang, Shaolin Xiong, Xiang Ma, Yue Huang, Liming Song

CATCH-1, as the first satellite of Chasing All Transients Constellation Hunters (CATCH) space mission, was successfully launched into its expected orbit on June 22, 2024. The flight model underwent environmental tests before launch, including thermal cycling, thermal vacuum, and mechanical evaluations. The CATCH-1 detector system is equipped with a 4-pixel Silicon Drift Detector (SDD) array. To ensure the reliability and redundancy of the CATCH-1 detector system, two sets of data acquisition systems were independently designed and calibrated. Our focus is on presenting the ground calibration results of CATCH-1, which demonstrate a strong linear correlation between energy and channel. The main data acquisition system achieves an energy resolution of (sim ) 120 eV@4 keV, while the backup data acquisition system has a slightly lower energy resolution of around 150 eV@4 keV, both meeting the design requirement of (le ) 160 eV@4 keV. Additionally, the time resolution is ( sim 4,mu s), complying with the design requirement of (le 10,mu s). The calibration database now includes the ground calibration results of CATCH-1, establishing a dependable basis for future data analysis. The development experience, calibration, and test results of this detector system will also provide a solid foundation for subsequent tasks such as CATCH-2.

2024年6月22日,“CATCH-1”作为“全瞬变星座猎手”(CATCH)太空任务的首颗卫星,成功发射进入预定轨道。飞行模型在发射前进行了环境测试,包括热循环、热真空和机械评估。CATCH-1探测器系统配备了一个4像素硅漂移探测器(SDD)阵列。为保证CATCH-1探测器系统的可靠性和冗余性,独立设计和标定了两套数据采集系统。我们的重点是展示CATCH-1的地面校准结果,这些结果表明能量和信道之间存在很强的线性相关性。主数据采集系统的能量分辨率为(sim ) 120 eV@4 keV,备用数据采集系统的能量分辨率略低,在150 eV@4 keV左右,均满足了(le ) 160 eV@4 keV的设计要求。时间分辨率为( sim 4,mu s),符合(le 10,mu s)的设计要求。校正数据库现已包括CATCH-1的地面校正结果,为今后的数据分析奠定了可靠的基础。该探测器系统的开发经验、校准和测试结果也将为后续的CATCH-2等任务提供坚实的基础。
{"title":"Ground testing and calibration of focal plane detector flight model on board the first pathfinder of CATCH","authors":"Panping Li,&nbsp;Kang Zhao,&nbsp;Xiangyang Wen,&nbsp;Zhengwei Li,&nbsp;Min Gao,&nbsp;Qian-Qing Yin,&nbsp;Lian Tao,&nbsp;Qingchang Zhao,&nbsp;Yusa Wang,&nbsp;Zijian Zhao,&nbsp;Shujie Zhao,&nbsp;Yiming Huang,&nbsp;Jingyu Xiao,&nbsp;Yifan Zhang,&nbsp;Bin Meng,&nbsp;Sheng Yang,&nbsp;Wen Chen,&nbsp;Heng Zhou,&nbsp;Yong Yang,&nbsp;Huilin He,&nbsp;Ruican Ma,&nbsp;Shuai Yang,&nbsp;Guoli Huang,&nbsp;YaJun Li,&nbsp;Jiewei Cao,&nbsp;Shu-Jin Hou,&nbsp;Xiaojing Liu,&nbsp;Jinzhou Wang,&nbsp;Liang Sun,&nbsp;Shuang-Nan Zhang,&nbsp;Shaolin Xiong,&nbsp;Xiang Ma,&nbsp;Yue Huang,&nbsp;Liming Song","doi":"10.1007/s10686-024-09966-4","DOIUrl":"10.1007/s10686-024-09966-4","url":null,"abstract":"<div><p><i>CATCH</i>-1, as the first satellite of Chasing All Transients Constellation Hunters (<i>CATCH</i>) space mission, was successfully launched into its expected orbit on June 22, 2024. The flight model underwent environmental tests before launch, including thermal cycling, thermal vacuum, and mechanical evaluations. The <i>CATCH</i>-1 detector system is equipped with a 4-pixel Silicon Drift Detector (SDD) array. To ensure the reliability and redundancy of the <i>CATCH</i>-1 detector system, two sets of data acquisition systems were independently designed and calibrated. Our focus is on presenting the ground calibration results of <i>CATCH</i>-1, which demonstrate a strong linear correlation between energy and channel. The main data acquisition system achieves an energy resolution of <span>(sim )</span> 120 eV@4 keV, while the backup data acquisition system has a slightly lower energy resolution of around 150 eV@4 keV, both meeting the design requirement of <span>(le )</span> 160 eV@4 keV. Additionally, the time resolution is <span>( sim 4,mu s)</span>, complying with the design requirement of <span>(le 10,mu s)</span>. The calibration database now includes the ground calibration results of <i>CATCH</i>-1, establishing a dependable basis for future data analysis. The development experience, calibration, and test results of this detector system will also provide a solid foundation for subsequent tasks such as <i>CATCH</i>-2.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of Wind pattern at the incursion site of Pangong Tso near Merak Village 美叻村附近班公措入侵点风型研究
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-12-24 DOI: 10.1007/s10686-024-09972-6
Belur Ravindra, Deepangkar Sarkar, Shantikumar Singh Ningombam, Stanzin Tundup, Namgyal Dorje, Angchuk Dorje, Prabhu Kesavan, Dipankar Banerjee

This study analyzes twelve years of wind speed and direction data collected at the proposed National Large Solar Telescope (NLST) site near Pangong Tso, Merak village, Leh-Ladakh. A weather station from Campbell Scientific Instruments, installed in 2008, has been continuously monitoring meteorological parameters, including wind speed and direction. The data reveals a consistent pattern of predominantly northwest winds, particularly during morning hours, with speeds generally below 5 m/s. While seasonal variations influence wind speed and direction, the overall trend remains stable. To assess the site’s suitability for astronomical observations, we compared high-altitude wind speeds at various renowned astronomical sites using reanalysis data from 2008 to 2020. Strong correlations were observed between surface and high-altitude wind speeds at 10 m, 50 m, and 500 m. Statistical analysis of 200-mbar pressure level wind speeds identified La Palma as the most favorable site with a wind speed of 18.76 m/s. La Silla, on the other hand, exhibited the highest wind speed at 34.76 m/s. Merak’s estimated wind speed of 30.99 m/s, coupled with its favorable wind direction and low surface wind speeds, suggests its potential as a promising site for astronomical observations.

这项研究分析了在列拉达克Merak村Pangong Tso附近拟议的国家大型太阳望远镜(NLST)站点收集的12年的风速和风向数据。坎贝尔科学仪器公司(Campbell Scientific Instruments)于2008年安装的气象站一直在持续监测气象参数,包括风速和风向。数据显示,西北风一直以西北为主,特别是在早晨,风速通常低于5米/秒。虽然季节变化影响风速和风向,但总体趋势保持稳定。为了评估该站点是否适合进行天文观测,我们使用2008年至2020年的再分析数据比较了各个著名天文站点的高空风速。在10 m、50 m和500 m处,地表风速与高空风速有很强的相关性。对200毫巴压力级风速的统计分析表明,拉帕尔马风速为18.76米/秒,是最有利的地点。另一方面,拉新罗的风速最高,为34.76米/秒。Merak的估计风速为30.99米/秒,加上有利的风向和较低的地表风速,表明它可能是一个很有希望的天文观测地点。
{"title":"Study of Wind pattern at the incursion site of Pangong Tso near Merak Village","authors":"Belur Ravindra,&nbsp;Deepangkar Sarkar,&nbsp;Shantikumar Singh Ningombam,&nbsp;Stanzin Tundup,&nbsp;Namgyal Dorje,&nbsp;Angchuk Dorje,&nbsp;Prabhu Kesavan,&nbsp;Dipankar Banerjee","doi":"10.1007/s10686-024-09972-6","DOIUrl":"10.1007/s10686-024-09972-6","url":null,"abstract":"<div><p>This study analyzes twelve years of wind speed and direction data collected at the proposed National Large Solar Telescope (NLST) site near Pangong Tso, Merak village, Leh-Ladakh. A weather station from Campbell Scientific Instruments, installed in 2008, has been continuously monitoring meteorological parameters, including wind speed and direction. The data reveals a consistent pattern of predominantly northwest winds, particularly during morning hours, with speeds generally below 5 m/s. While seasonal variations influence wind speed and direction, the overall trend remains stable. To assess the site’s suitability for astronomical observations, we compared high-altitude wind speeds at various renowned astronomical sites using reanalysis data from 2008 to 2020. Strong correlations were observed between surface and high-altitude wind speeds at 10 m, 50 m, and 500 m. Statistical analysis of 200-mbar pressure level wind speeds identified La Palma as the most favorable site with a wind speed of 18.76 m/s. La Silla, on the other hand, exhibited the highest wind speed at 34.76 m/s. Merak’s estimated wind speed of 30.99 m/s, coupled with its favorable wind direction and low surface wind speeds, suggests its potential as a promising site for astronomical observations.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Science filter characterization of the Solar Ultraviolet Imaging Telescope (SUIT) on board Aditya-L1. Aditya-L1上的太阳紫外线成像望远镜(SUIT)的科学滤光片特征。
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-12-19 DOI: 10.1007/s10686-024-09973-5
Janmejoy Sarkar, Rushikesh Deogaonkar, Ravi Kesharwani, Sreejith Padinhatteeri, A. N. Ramaprakash, Durgesh Tripathi, Soumya Roy, Gazi A. Ahmed, Rwitika Chatterjee, Avyarthana Ghosh, Sankarasubramanian K., Aafaque Khan, Nidhi Mehandiratta, Netra Pillai, Swapnil Singh

The Solar Ultraviolet Imaging Telescope (SUIT ) on board the Aditya-L1 mission is designed to observe the Sun across 200–400 nm wavelength. The telescope used 16 dichroic filters tuned at specific wavelengths in various combinations to achieve its science goals. For accurate measurements and interpretation, it is important to characterize these filters for spectral variations as a function of spatial location and tilt angle. Moreover, we also measured out-of-band and in-band transmission characteristics with respect to the inband transmissions. In this paper, we present the experimental setup, test methodology, and the analyzed results. Our findings reveal that the transmission properties of all filters meet the expected performance for spatial variation of transmission and the transmission band at a specific tilt angle. The out-of-band transmission for all filters is below 1% with respect to in-band, except for filters BB01 and NB01. These results confirm the capabilities of SUIT to effectively capture critical solar features in the anticipated layer of the solar atmosphere.

Aditya-L1任务上的太阳紫外成像望远镜(SUIT)被设计用于在200 - 400nm波长上观测太阳。该望远镜使用了16个以不同组合的特定波长调谐的二向色滤光片来实现其科学目标。为了精确测量和解释,重要的是表征这些过滤器的光谱变化作为空间位置和倾斜角度的函数。此外,我们还测量了带内传输的带外和带内传输特性。在本文中,我们介绍了实验设置、测试方法和分析结果。研究结果表明,所有滤光片的传输特性都满足预期的传输空间变化和特定倾角下的传输频带性能。除滤波器BB01和NB01外,所有滤波器的带外传输率都低于带内传输率的1%。这些结果证实了SUIT在预期的太阳大气层中有效捕获关键太阳特征的能力。
{"title":"Science filter characterization of the Solar Ultraviolet Imaging Telescope (SUIT) on board Aditya-L1.","authors":"Janmejoy Sarkar,&nbsp;Rushikesh Deogaonkar,&nbsp;Ravi Kesharwani,&nbsp;Sreejith Padinhatteeri,&nbsp;A. N. Ramaprakash,&nbsp;Durgesh Tripathi,&nbsp;Soumya Roy,&nbsp;Gazi A. Ahmed,&nbsp;Rwitika Chatterjee,&nbsp;Avyarthana Ghosh,&nbsp;Sankarasubramanian K.,&nbsp;Aafaque Khan,&nbsp;Nidhi Mehandiratta,&nbsp;Netra Pillai,&nbsp;Swapnil Singh","doi":"10.1007/s10686-024-09973-5","DOIUrl":"10.1007/s10686-024-09973-5","url":null,"abstract":"<div><p>The Solar Ultraviolet Imaging Telescope (<i>SUIT </i>) on board the Aditya-L1 mission is designed to observe the Sun across 200–400 nm wavelength. The telescope used 16 dichroic filters tuned at specific wavelengths in various combinations to achieve its science goals. For accurate measurements and interpretation, it is important to characterize these filters for spectral variations as a function of spatial location and tilt angle. Moreover, we also measured out-of-band and in-band transmission characteristics with respect to the inband transmissions. In this paper, we present the experimental setup, test methodology, and the analyzed results. Our findings reveal that the transmission properties of all filters meet the expected performance for spatial variation of transmission and the transmission band at a specific tilt angle. The out-of-band transmission for all filters is below 1% with respect to in-band, except for filters BB01 and NB01. These results confirm the capabilities of <i>SUIT </i>to effectively capture critical solar features in the anticipated layer of the solar atmosphere.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning-based prediction approaches of binary star parameters 基于深度学习的双星参数预测方法
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-12-19 DOI: 10.1007/s10686-024-09969-1
Islam Helmy, Mohamed Ismail, Doaa Eid

The precise computation of binary star parameters is crucial for understanding their formation, evolution, and dynamics. However, large datasets of available astronomical measurements require substantial effort for computing using classic astronomical methods. Deep learning (DL) is a promising approach that can provide a proper solution for estimating the parameters and reducing the burden of the lengthy procedures of astronomical computations. This study proposes two DL-based models for estimating binary star parameters. The first is the well-known multi-layer perceptron (MLP) model, whereas the second is based on long short-term memory (LSTM). We rely on databases, such as large sky multi-object fiber spectroscopic telescope area (LAMOST), to train the proposed models. In addition, we verify the training ratio showing that the performance of both models at a low training ratio of (30%), based on the mean square error (MSE), results in acceptable performance. Furthermore, the LSTM-based DL model outperforms the conventional MLP for different training ratios. Eventually, the two models have superiority compared to the benchmark methods.

双星参数的精确计算对于理解它们的形成、演化和动力学是至关重要的。然而,大量可用的天文测量数据集需要大量的工作来使用经典的天文方法进行计算。深度学习(Deep learning, DL)是一种很有前途的方法,它可以为估计参数和减少冗长的天文计算过程的负担提供适当的解决方案。本研究提出了两种基于dl的双星参数估计模型。第一个是众所周知的多层感知器(MLP)模型,而第二个是基于长短期记忆(LSTM)的模型。我们依靠数据库,如大型天空多目标光纤光谱望远镜区域(LAMOST),来训练所提出的模型。此外,我们验证了训练比,表明两个模型在基于均方误差(MSE)的低训练比(30%)下的性能都是可以接受的。此外,基于lstm的深度学习模型在不同的训练比率下都优于传统的MLP模型。最终,这两种模型与基准方法相比具有优势。
{"title":"Deep learning-based prediction approaches of binary star parameters","authors":"Islam Helmy,&nbsp;Mohamed Ismail,&nbsp;Doaa Eid","doi":"10.1007/s10686-024-09969-1","DOIUrl":"10.1007/s10686-024-09969-1","url":null,"abstract":"<div><p>The precise computation of binary star parameters is crucial for understanding their formation, evolution, and dynamics. However, large datasets of available astronomical measurements require substantial effort for computing using classic astronomical methods. Deep learning (DL) is a promising approach that can provide a proper solution for estimating the parameters and reducing the burden of the lengthy procedures of astronomical computations. This study proposes two DL-based models for estimating binary star parameters. The first is the well-known multi-layer perceptron (MLP) model, whereas the second is based on long short-term memory (LSTM). We rely on databases, such as large sky multi-object fiber spectroscopic telescope area (LAMOST), to train the proposed models. In addition, we verify the training ratio showing that the performance of both models at a low training ratio of <span>(30%)</span>, based on the mean square error (MSE), results in acceptable performance. Furthermore, the LSTM-based DL model outperforms the conventional MLP for different training ratios. Eventually, the two models have superiority compared to the benchmark methods.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09969-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142844997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preliminary design and development of the module back-end electronics for the large area detector onboard the eXTP mission 初步设计和开发用于 eXTP 飞行任务搭载的大面积探测器的模块后端电子设备
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-12-17 DOI: 10.1007/s10686-024-09974-4
Hao Xiong, Jörg Bayer, Andrea Santangelo, Marco Feroci, Ettore Del Monte, Alejandro Guzman, Paul Hedderman, Gabriele Minervini, Samuel Pliego, Andreas Putz, Chris Tenzer, Alessio Trois, Xianqi Wang

The Large Area Detector (LAD) is one of the science payloads of the enhanced X-ray Timing and Polarimetry (eXTP) mission. The LAD is a spectral-timing instrument with a broad energy response, covering a range from 2 to 30 keV, a good timing resolution of better than 10 µs, and an expected energy resolution of 260 eV at 6 keV. The LAD consists of 640 large-area multi-anode Silicon Drift Detectors (SDDs). Given the large number of detectors, the LAD uses a modular design. Each module comprises sixteen detectors, and each detector is equipped with dedicated Front-End Electronics (FEE), interfacing with two separate Module Back-End Electronics (MBEEs). Each MBEE is designed to process the data from 1,792 anode channels in 8 FEEs (224 anode channels per FEE), performing the energy reconstruction and time tagging for X-ray events. The MBEE uses the European Field Programmable Gate Array (FPGA) from NanoXplore™, based on a pipeline concept, which reduces dead time, making the LAD suitable for higher flux X-ray detection, and it can handle a sustained flux of >500 mCrab and a continuous flux of >15 Crab for up to 300 minutes (Feroci et al. 2018). Additionally, the MBEE serves as the central hub for configuring the module’s electronics, including the FEEs, the Power Supply Unit (PSU), and the MBEE itself, and it is also responsible for collecting housekeeping data to monitor the system’s status. The prototype MBEE was designed, manufactured, and programmed with FPGA firmware using VHDL. The basic functional test was conducted in this paper, and the results indicated that the MBEE could be operated in different modes to perform the functions mentioned above. Analysis and testing show that it can transmit event packets-containing timing tag, event type, position ID, and energy information-at a baud rate of 2 Mbps with an event loss fraction of 1.5%.

大面积探测器(LAD)是增强型x射线定时和偏振测量(eXTP)任务的科学有效载荷之一。LAD是一种具有广泛能量响应的光谱定时仪器,覆盖范围从2到30 keV,定时分辨率优于10µs,预期能量分辨率为260 eV在6 keV。LAD由640个大面积多阳极硅漂移检测器(sdd)组成。考虑到大量的探测器,LAD采用模块化设计。每个模块包括16个探测器,每个探测器配备专用前端电子设备(FEE),与两个独立的模块后端电子设备(MBEEs)接口。每个MBEE设计用于处理来自8个FEE(每个FEE 224个阳极通道)的1,792个阳极通道的数据,执行x射线事件的能量重建和时间标记。MBEE使用NanoXplore™的欧洲现场可编程门阵列(FPGA),基于管道概念,减少了死区时间,使LAD适用于更高通量的x射线检测,并且它可以处理>;500 mcab的持续通量和>;15 Crab的连续通量长达300分钟(Feroci et al. 2018)。此外,MBEE还充当配置模块电子设备(包括FEEs、电源供应单元(PSU)和MBEE本身)的中心集线器,它还负责收集管理数据以监控系统状态。MBEE原型机的设计、制造和编程采用FPGA固件,使用VHDL进行。本文进行了基本功能测试,结果表明MBEE可以在不同的模式下运行,以实现上述功能。分析和测试表明,它可以以2mbps的波特率传输包含时间标签、事件类型、位置ID和能量信息的事件数据包,事件丢失率为1.5%。
{"title":"Preliminary design and development of the module back-end electronics for the large area detector onboard the eXTP mission","authors":"Hao Xiong,&nbsp;Jörg Bayer,&nbsp;Andrea Santangelo,&nbsp;Marco Feroci,&nbsp;Ettore Del Monte,&nbsp;Alejandro Guzman,&nbsp;Paul Hedderman,&nbsp;Gabriele Minervini,&nbsp;Samuel Pliego,&nbsp;Andreas Putz,&nbsp;Chris Tenzer,&nbsp;Alessio Trois,&nbsp;Xianqi Wang","doi":"10.1007/s10686-024-09974-4","DOIUrl":"10.1007/s10686-024-09974-4","url":null,"abstract":"<div><p>The Large Area Detector (LAD) is one of the science payloads of the enhanced X-ray Timing and Polarimetry (eXTP) mission. The LAD is a spectral-timing instrument with a broad energy response, covering a range from 2 to 30 keV, a good timing resolution of better than 10 µs, and an expected energy resolution of 260 eV at 6 keV. The LAD consists of 640 large-area multi-anode Silicon Drift Detectors (SDDs). Given the large number of detectors, the LAD uses a modular design. Each module comprises sixteen detectors, and each detector is equipped with dedicated Front-End Electronics (FEE), interfacing with two separate Module Back-End Electronics (MBEEs). Each MBEE is designed to process the data from 1,792 anode channels in 8 FEEs (224 anode channels per FEE), performing the energy reconstruction and time tagging for X-ray events. The MBEE uses the European Field Programmable Gate Array (FPGA) from NanoXplore™, based on a pipeline concept, which reduces dead time, making the LAD suitable for higher flux X-ray detection, and it can handle a sustained flux of &gt;500 mCrab and a continuous flux of &gt;15 Crab for up to 300 minutes (Feroci et al. 2018). Additionally, the MBEE serves as the central hub for configuring the module’s electronics, including the FEEs, the Power Supply Unit (PSU), and the MBEE itself, and it is also responsible for collecting housekeeping data to monitor the system’s status. The prototype MBEE was designed, manufactured, and programmed with FPGA firmware using VHDL. The basic functional test was conducted in this paper, and the results indicated that the MBEE could be operated in different modes to perform the functions mentioned above. Analysis and testing show that it can transmit event packets-containing timing tag, event type, position ID, and energy information-at a baud rate of 2 Mbps with an event loss fraction of 1.5%.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09974-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Galaxy formation and symbiotic evolution with the inter-galactic medium in the age of ELT-ANDES ELT-ANDES时代星系形成与星系间介质共生演化
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-12-09 DOI: 10.1007/s10686-024-09967-3
Valentina D’Odorico, James S. Bolton, Lise Christensen, Annalisa De Cia, Erik Zackrisson, Aron Kordt, Luca Izzo, Jiangtao Li, Roberto Maiolino, Alessandro Marconi, Philipp Richter, Andrea Saccardi, Stefania Salvadori, Irene Vanni, Chiara Feruglio, Michele Fumagalli, Johan P. U. Fynbo, Pasquier Noterdaeme, Polychronis Papaderos, Céline Péroux, Aprajita Verma, Paolo Di Marcantonio, Livia Origlia, Alessio Zanutta

High-resolution absorption spectroscopy toward bright background sources has had a paramount role in understanding early galaxy formation, the evolution of the intergalactic medium and the reionisation of the Universe. However, these studies are now approaching the boundaries of what can be achieved at ground-based 8-10m class telescopes. The identification of primeval systems at the highest redshifts, within the reionisation epoch and even into the dark ages, and of the products of the first generation of stars and the chemical enrichment of the early Universe, requires observing very faint targets with a signal-to-noise ratio high enough to detect very weak spectral signatures. In this paper, we describe the giant leap forward that will be enabled by ANDES, the high-resolution spectrograph for the ELT, in these key science fields, together with a brief, non-exhaustive overview of other extragalactic research topics that will be pursued by this instrument, and its synergistic use with other facilities that will become available in the early 2030s.

对明亮背景源的高分辨率吸收光谱在理解早期星系形成、星系间介质的演化和宇宙的再电离方面起着至关重要的作用。然而,这些研究现在正在接近地面8-10米级望远镜所能达到的极限。在再电离时期甚至进入黑暗时代的最高红移的原始系统的识别,以及第一代恒星的产物和早期宇宙的化学富集,需要观察非常微弱的目标,其信噪比足够高,可以探测到非常微弱的光谱特征。在本文中,我们描述了ELT的高分辨率光谱仪ANDES将在这些关键科学领域实现的巨大飞跃,并简要概述了该仪器将追求的其他河外研究主题,以及它与将在2030年代初可用的其他设施的协同使用。
{"title":"Galaxy formation and symbiotic evolution with the inter-galactic medium in the age of ELT-ANDES","authors":"Valentina D’Odorico,&nbsp;James S. Bolton,&nbsp;Lise Christensen,&nbsp;Annalisa De Cia,&nbsp;Erik Zackrisson,&nbsp;Aron Kordt,&nbsp;Luca Izzo,&nbsp;Jiangtao Li,&nbsp;Roberto Maiolino,&nbsp;Alessandro Marconi,&nbsp;Philipp Richter,&nbsp;Andrea Saccardi,&nbsp;Stefania Salvadori,&nbsp;Irene Vanni,&nbsp;Chiara Feruglio,&nbsp;Michele Fumagalli,&nbsp;Johan P. U. Fynbo,&nbsp;Pasquier Noterdaeme,&nbsp;Polychronis Papaderos,&nbsp;Céline Péroux,&nbsp;Aprajita Verma,&nbsp;Paolo Di Marcantonio,&nbsp;Livia Origlia,&nbsp;Alessio Zanutta","doi":"10.1007/s10686-024-09967-3","DOIUrl":"10.1007/s10686-024-09967-3","url":null,"abstract":"<div><p>High-resolution absorption spectroscopy toward bright background sources has had a paramount role in understanding early galaxy formation, the evolution of the intergalactic medium and the reionisation of the Universe. However, these studies are now approaching the boundaries of what can be achieved at ground-based 8-10m class telescopes. The identification of primeval systems at the highest redshifts, within the reionisation epoch and even into the dark ages, and of the products of the first generation of stars and the chemical enrichment of the early Universe, requires observing very faint targets with a signal-to-noise ratio high enough to detect very weak spectral signatures. In this paper, we describe the giant leap forward that will be enabled by ANDES, the high-resolution spectrograph for the ELT, in these key science fields, together with a brief, non-exhaustive overview of other extragalactic research topics that will be pursued by this instrument, and its synergistic use with other facilities that will become available in the early 2030s.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"58 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High strehl and high contrast for the ELT instrument METIS ELT 仪器 METIS 的高条纹和高对比度
IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-11-29 DOI: 10.1007/s10686-024-09968-2
Markus Feldt, Thomas Bertram, Carlos Correia, Olivier Absil, M. Concepción Cárdenas Vázquez, Hugo Coppejans, Martin Kulas, Andreas Obereder, Gilles Orban de Xivry, Silvia Scheithauer, Horst Steuer

The Mid-infrared ELT Imager and Spectrograph (METIS) is a first-generation instrument for the Extremely Large Telescope (ELT), Europe’s next-generation 39 m ground-based telescope for optical and infrared wavelengths, which is currently under construction at the European Southern Observatory (ESO) site at Cerro Armazones in Chile. METIS will offer diffraction-limited imaging, low- and medium-resolution slit spectroscopy, and coronagraphy for high-contrast imaging between 3 and 13 microns, as well as high-resolution integral field spectroscopy between 3 and 5 microns. The main METIS science goals are the detection and characterisation of exoplanets, the investigation of proto-planetary disks, and the formation of planets. The Single-Conjugate Adaptive Optics (SCAO) system corrects atmospheric distortions and is thus essential for diffraction-limited observations with METIS. SCAO will be used for all observing modes, with high-contrast imaging imposing the most demanding requirements on its performance. The Final Design Review (FDR) of METIS took place in the fall of 2022; the development of the instrument, including its SCAO system, has since entered the Manufacturing, Assembly, Integration and Testing (MAIT) phase. Numerous challenging aspects of an ELT Adaptive Optics (AO) system are addressed in the mature designs for the SCAO control system and the SCAO hardware module: the complex interaction with the telescope entities that participate in the AO control, wavefront reconstruction with a fragmented and moving pupil, secondary control tasks to deal with differential image motion, non-common path aberrations and mis-registration. A K-band pyramid wavefront sensor and a GPU-based Real-Time Computer (RTC), tailored to the needs of METIS at the ELT, are core components. This current paper serves as a natural sequel to our previous work presented in Hippler et al. (2018). It reflects all the updates that were implemented between the Preliminary Design Review (PDR) and FDR, and includes updated performance estimations in terms of several key performance indicators, including achieved contrast curves. We outline all important design decisions that were taken, and present the major challenges we faced and the main analyses carried out to arrive at these decisions and eventually the final design. We also elaborate on our testing and verification strategy, and, last not least, comprehensively present the full design, hardware and software in this paper to provide a single source of reference which will remain valid at least until commissioning.

中红外 ELT 成像仪和摄谱仪(METIS)是超大望远镜(ELT)的第一代仪器,ELT 是欧洲下一代 39 米地基光学和红外望远镜,目前正在智利 Cerro Armazones 的欧洲南方天文台(ESO)建造。METIS 将提供衍射极限成像、低分辨率和中分辨率狭缝光谱分析、用于 3 至 13 微米高对比度成像的日冕仪以及 3 至 5 微米高分辨率积分场光谱分析。METIS 的主要科学目标是探测系外行星并确定其特征,研究原行星盘和行星的形成。单共轭自适应光学系统(SCAO)可纠正大气畸变,因此对 METIS 的衍射极限观测至关重要。SCAO 将用于所有观测模式,其中高对比度成像对其性能要求最高。METIS 的最终设计审查(FDR)于 2022 年秋季进行;此后,包括 SCAO 系统在内的仪器开发进入了制造、组装、集成和测试(MAIT)阶段。ELT自适应光学(AO)系统的许多挑战性方面都在SCAO控制系统和SCAO硬件模块的成熟设计中得到了解决:与参与AO控制的望远镜实体之间的复杂交互、碎片和移动瞳孔的波前重建、处理差分图像运动的辅助控制任务、非共同路径像差和错误配准。根据 ELT METIS 的需要定制的 K 波段金字塔波前传感器和基于 GPU 的实时计算机(RTC)是核心组件。本文是我们在 Hippler 等人(2018 年)中介绍的先前工作的自然续篇。它反映了在初步设计审查(PDR)和最终设计审查(FDR)之间实施的所有更新,并包括几个关键性能指标的最新性能估计,包括实现的对比曲线。我们概述了做出的所有重要设计决定,并介绍了我们面临的主要挑战以及为做出这些决定和最终设计而进行的主要分析。我们还阐述了我们的测试和验证策略,最后也是最重要的一点是,我们在本文中全面介绍了完整的设计、硬件和软件,以提供一个单一的参考源,至少在试运行之前一直有效。
{"title":"High strehl and high contrast for the ELT instrument METIS","authors":"Markus Feldt,&nbsp;Thomas Bertram,&nbsp;Carlos Correia,&nbsp;Olivier Absil,&nbsp;M. Concepción Cárdenas Vázquez,&nbsp;Hugo Coppejans,&nbsp;Martin Kulas,&nbsp;Andreas Obereder,&nbsp;Gilles Orban de Xivry,&nbsp;Silvia Scheithauer,&nbsp;Horst Steuer","doi":"10.1007/s10686-024-09968-2","DOIUrl":"10.1007/s10686-024-09968-2","url":null,"abstract":"<div><p>The Mid-infrared ELT Imager and Spectrograph (METIS) is a first-generation instrument for the Extremely Large Telescope (ELT), Europe’s next-generation 39 m ground-based telescope for optical and infrared wavelengths, which is currently under construction at the European Southern Observatory (ESO) site at Cerro Armazones in Chile. METIS will offer diffraction-limited imaging, low- and medium-resolution slit spectroscopy, and coronagraphy for high-contrast imaging between 3 and 13 microns, as well as high-resolution integral field spectroscopy between 3 and 5 microns. The main METIS science goals are the detection and characterisation of exoplanets, the investigation of proto-planetary disks, and the formation of planets. The Single-Conjugate Adaptive Optics (SCAO) system corrects atmospheric distortions and is thus essential for diffraction-limited observations with METIS. SCAO will be used for all observing modes, with high-contrast imaging imposing the most demanding requirements on its performance. The Final Design Review (FDR) of METIS took place in the fall of 2022; the development of the instrument, including its SCAO system, has since entered the Manufacturing, Assembly, Integration and Testing (MAIT) phase. Numerous challenging aspects of an ELT Adaptive Optics (AO) system are addressed in the mature designs for the SCAO control system and the SCAO hardware module: the complex interaction with the telescope entities that participate in the AO control, wavefront reconstruction with a fragmented and moving pupil, secondary control tasks to deal with differential image motion, non-common path aberrations and mis-registration. A <i>K</i>-band pyramid wavefront sensor and a GPU-based Real-Time Computer (RTC), tailored to the needs of METIS at the ELT, are core components. This current paper serves as a natural sequel to our previous work presented in Hippler et al. (2018). It reflects all the updates that were implemented between the Preliminary Design Review (PDR) and FDR, and includes updated performance estimations in terms of several key performance indicators, including achieved contrast curves. We outline all important design decisions that were taken, and present the major challenges we faced and the main analyses carried out to arrive at these decisions and eventually the final design. We also elaborate on our testing and verification strategy, and, last not least, comprehensively present the full design, hardware and software in this paper to provide a single source of reference which will remain valid at least until commissioning.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"58 3","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09968-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142736970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Experimental Astronomy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1