At the Locus of Performance: Quantifying the Effects of Copious 3D-Stacked Cache on HPC Workloads

IF 1.5 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Architecture and Code Optimization Pub Date : 2023-10-25 DOI:10.1145/3629520
Jens Domke, Emil Vatai, Balazs Gerofi, Yuetsu Kodama, Mohamed Wahib, Artur Podobas, Sparsh Mittal, Miquel Pericàs, Lingqi Zhang, Peng Chen, Aleksandr Drozd, Satoshi Matsuoka
{"title":"At the Locus of Performance: Quantifying the Effects of Copious 3D-Stacked Cache on HPC Workloads","authors":"Jens Domke, Emil Vatai, Balazs Gerofi, Yuetsu Kodama, Mohamed Wahib, Artur Podobas, Sparsh Mittal, Miquel Pericàs, Lingqi Zhang, Peng Chen, Aleksandr Drozd, Satoshi Matsuoka","doi":"10.1145/3629520","DOIUrl":null,"url":null,"abstract":"Over the last three decades, innovations in the memory subsystem were primarily targeted at overcoming the data movement bottleneck. In this paper, we focus on a specific market trend in memory technology: 3D-stacked memory and caches. We investigate the impact of extending the on-chip memory capabilities in future HPC-focused processors, particularly by 3D-stacked SRAM. First, we propose a method oblivious to the memory subsystem to gauge the upper-bound in performance improvements when data movement costs are eliminated. Then, using the gem5 simulator, we model two variants of a hypothetical LARge Cache processor (LARC), fabricated in 1.5 nm and enriched with high-capacity 3D-stacked cache. With a volume of experiments involving a broad set of proxy-applications and benchmarks, we aim to reveal how HPC CPU performance will evolve, and conclude an average boost of 9.56x for cache-sensitive HPC applications, on a per-chip basis. Additionally, we exhaustively document our methodological exploration to motivate HPC centers to drive their own technological agenda through enhanced co-design.","PeriodicalId":50920,"journal":{"name":"ACM Transactions on Architecture and Code Optimization","volume":"65 sp1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Architecture and Code Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3629520","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Over the last three decades, innovations in the memory subsystem were primarily targeted at overcoming the data movement bottleneck. In this paper, we focus on a specific market trend in memory technology: 3D-stacked memory and caches. We investigate the impact of extending the on-chip memory capabilities in future HPC-focused processors, particularly by 3D-stacked SRAM. First, we propose a method oblivious to the memory subsystem to gauge the upper-bound in performance improvements when data movement costs are eliminated. Then, using the gem5 simulator, we model two variants of a hypothetical LARge Cache processor (LARC), fabricated in 1.5 nm and enriched with high-capacity 3D-stacked cache. With a volume of experiments involving a broad set of proxy-applications and benchmarks, we aim to reveal how HPC CPU performance will evolve, and conclude an average boost of 9.56x for cache-sensitive HPC applications, on a per-chip basis. Additionally, we exhaustively document our methodological exploration to motivate HPC centers to drive their own technological agenda through enhanced co-design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在性能轨迹:量化丰富的3d堆叠缓存对高性能计算工作负载的影响
在过去的三十年中,内存子系统的创新主要是为了克服数据移动瓶颈。在本文中,我们专注于存储技术的特定市场趋势:3d堆叠内存和缓存。我们研究了扩展片上存储能力对未来以高性能计算为重点的处理器的影响,特别是通过3d堆叠SRAM。首先,我们提出了一种与内存子系统无关的方法来衡量消除数据移动成本后性能改进的上限。然后,使用gem5模拟器,我们模拟了假设的大缓存处理器(LARC)的两种变体,该处理器由1.5 nm制造,并富含高容量3d堆叠缓存。通过大量涉及代理应用程序和基准测试的实验,我们的目标是揭示HPC CPU性能将如何发展,并得出结论,在每个芯片的基础上,对缓存敏感的HPC应用程序的平均提升为9.56倍。此外,我们详尽地记录了我们的方法探索,以激励HPC中心通过增强的协同设计来推动他们自己的技术议程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Architecture and Code Optimization
ACM Transactions on Architecture and Code Optimization 工程技术-计算机:理论方法
CiteScore
3.60
自引率
6.20%
发文量
78
审稿时长
6-12 weeks
期刊介绍: ACM Transactions on Architecture and Code Optimization (TACO) focuses on hardware, software, and system research spanning the fields of computer architecture and code optimization. Articles that appear in TACO will either present new techniques and concepts or report on experiences and experiments with actual systems. Insights useful to architects, hardware or software developers, designers, builders, and users will be emphasized.
期刊最新文献
A Survey of General-purpose Polyhedral Compilers Sectored DRAM: A Practical Energy-Efficient and High-Performance Fine-Grained DRAM Architecture Scythe: A Low-latency RDMA-enabled Distributed Transaction System for Disaggregated Memory FASA-DRAM: Reducing DRAM Latency with Destructive Activation and Delayed Restoration CoolDC: A Cost-Effective Immersion-Cooled Datacenter with Workload-Aware Temperature Scaling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1